Cost Benefit Analysis of Genomics for Mining

Chris Kennedy May 11, 2015

Presented at CIM 2015

An Evaluation of Potential Genomic Applications in the Mining Industry

Presentation Overview

- 1. Genomics as a tool
- 2. Evaluation Approach
- 3. Background on Scenarios and Outcomes
- 4. Concluding remarks

???

• Genomics definition: a science that aims to decipher and understand the entirety of the genetic information encoded in an organism's DNA and corresponding complements such as RNA, proteins, and metabolites.

- Interpreted: a tool to help better understand how biology functions
 - o Identification
 - Response to change
 - o Optimization
 - Etc.
- Genomics definition: a science that aims to decipher and understand the entirety of the genetic information encoded in an organism's DNA and corresponding complements such as RNA, proteins, and metabolites.

- Why do we need another biological tool?
 - Only 1% of microogranisms can be cultured, so we're missing 99% of the picture
 - For macro-biology, dependent on samplers schedule and experience – so species not conveniently present or misidentification
 - Unravelling what biology can do and what impacts it

- What do you need to know?
- Many of us use ICP but how much do we know about plasma and electron orbitals?
- Partnerships are the way forward...but then that's why many of us are here

2. Evaluation Approach

- SRK study evaluated the potential economic benefits of biological optimization using genomics for three scenarios:
 - Bio-oxidation (ore processing)
 - Passive Water Treatment
 - Closure and Reclamation
 - None involve genetic modification....
- Not a priority ranking and a suite of other opportunities identified from exploration geochemistry to baseline studies – and not just microorganisms...

3. Scenarios – Background and Outcomes

- Bio-oxidation or Bio-leaching
 - A process that uses bacteria to oxidize refractory sulphide ore
 - Bacteria are <u>catalysts</u> transfer electrons from sulphide to CO₂ to make organic carbon
 - Acidic, aerated, and moderate temperature (40°C)
 - Can be in stirred tanks or heap-leach
 - Gold is most common, although any deposit that requires oxidation has potential
 - 'Competition' is pressure oxidation higher throughput, higher recovery, but more expensive

- Timely...
 - CIM article October
 2014 "Keep the
 gold bugs happy"

Reverse engineering

The end result gives focus to geometallurgy programs

L'ingénierie inverse

Les programmes de géométallurgie suscitent un intérêt grandissant

Gold bugs are put to work at Eldorado Gold's Jinfeng mine

- Evaluation Inputs
 - Re-processing of tailings deposit full details in paper
 - Economic model used to evaluate hypothetical but realistic
 - o 80% recovery
 - o 1.5 g/t @ US\$ 1,170/oz
 - CostMine (2013) inputs
 - 10 year mine life...etc

Heap leach

- Much lower recovery higher potential for gain?
- Copper still major challenge to get much above 60%
- So where does genomics fit in?
 - Provides the means to optimize and improve rate limiting steps – to date mostly a action-reaction approach
 - For example, faster reaction rate, more complete oxidation, and faster adaption to <u>changing ore feed</u>

- Bacteria as catalysts
 - 'Reduction' using organic carbon and respiring on oxidized constituents like nitrate, selenate, ferric iron, sulphate, etc.
 - Scenario looked at backfilled open pits that have some portion of the waste rock water saturated – aka saturated rock fill (SRF) – supports anaerobic bacteria
 - Specifically for removal of selenium from mine waste contact waters in British Columbia coal fields – selenium redox chemistry affects solubility

- SRF compared to Fluidized Bed Reactor (FBR)(which is also biological)
 - MEND 2014 report for FBR costs (costs quoted in Globe article double)
 - Conservative CAPEX costs for SRF injection and monitoring wells + haulage
 - SRF technology still being developed, but based on experience with open pit configurations in coalfields

Treatment Method	CAPEX (M)	OPEX (M)	NPV (M)
Fluidized bed reactor	\$46	\$12	\$198
Backfilled pit	\$10	\$8	\$112
Savings*	\$36	\$4	\$86

* Per facility....so if you need 6 FBR plants for your operations that's \$516M...

- Where does genomics come in?
 - Full scale implementation not yet realized
 - Genomics needed to advance the research and develop process
 - Tolerance of microbial community to freshet and other chemistry changes
 - Rate limiting steps
 - Stakeholder and regulatory explanation deciphering the black box
 - Eventually also as a monitoring tool to ensure the system operates as designed – no other tool to do this.

- Covers often placed on mine waste at closure
- Depending on design and cost, they can meet a number of functions from dust suppression to inhibition of oxygen diffusion (sulphide oxidation)

- Covers can change moisture content and gas diffusion profile
- Changing physical conditions could support different microbial communities
- In-situ treatment (like SRF) or gas inhibition all together

- Scenario based on experience with northern mines and covers used to inhibit ARD
- Considerations Tailings Cover
 - 150 ha plan area
 - 800 mm of precipitation 50% to 1.5% infiltration
 - Rudimentary cover = \$80,000/ha
 - Two-layer = \$160,000/ha
 - Geosynthetic = \$300,000/ha (typically needed to stop sulphide oxidation)
 - Water treatment base case of \$2.50/m³ but decreases with better cover performance

Cover Type	CAPEX (M)	OPEX (M)	Total (M)
Geosynthetic Cover	\$30	\$2	\$32
Rudimentary Cover	\$12	\$0	\$12
Savings*	\$18	\$2	\$20

*per facility

- Genomics role:
 - Provide understanding on how microbial communities in soil respond to covers – positive and negative effects
 - Opportunity is to get a rudimentary cover to perform like a geosynthetic one
 - 'Layer cake' of microbial communities

4. Concluding Remarks

- Role for genomics seems only limited by the number of mining-biology interactions that exist
- Project economics could be increased, or cost savings realized
- Economic benefits in addition to much more sustainable long term options
- Opening up 'black box' of biology to all interested parties should not be underestimated

5. Acknowledgements

- Genome BC and OGI funding and connections
- Industry survey participants

