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RESUMEN 

Se presenta un modelo constitutivo que describe el comportamiento mecánico de arenas bajo carga 
monotónica dentro del rango de tensiones y deformaciones de interes ingenieril. Utiliza elasticidad 
dependiente de la presión, una versión de tres invariantes del criterio de Murata–Miura para compresión 
plástica, un criterio de Matsuoka–Nakai extendido para la respuesta inelástica al corte, y una implementación 
3D de la teoría tensión – dilatancia de Rowe. Con el fin que el modelo sea útil y atractivo para los ingenieros 
geotécnicos, sus ocho parámetros fueros elegidos entre aquellos mejor conocidos por la comunidad 
geotécnica. Se presentan algunas simulaciones numéricas que comparan el desempeño del modelo con 
resultados experimentales.  
Palabras clave: modelos constitutivos, tensión-dilatancia, arenas, ruptura de partículas 

ABSTRACT 

A constitutive model to describe the mechanical behavior of sands under monotonic loading throughout the 
stress and strain range of engineering interest is presented. The model uses pressure-dependent elasticity, a 
three-invariant version of the Murata-Miura yield loci for plastic compression, an enhanced Matsuoka-Nakai 
criterion for inelastic shear response, and a 3D implementation of Rowe’s stress-dilatancy theory. In order to 
make the model useful and attractive to geotechnical engineers, its eight parameters were selected among 
those well known to the geotechnical community. Some numerical simulations are presented to compare the 
model’s performance against experimental results. 
Keywords: constitutive modeling, strength-dilatancy, sands, particle crushing 

1 INTRODUCTION 

Computational geomechanics is gaining widespread 
acceptance as a reliable procedure for routine engi-
neering analysis in both static and cyclic loading 
conditions. Mohr-Coulomb and hyperbolic laws are 
those most used by practitioners to model sand be-
havior, despite the fact that these models have input 
parameters that are problem-dependent. For in-
stance, one set of parameters is used to model the 
behavior of the sand surrounding a pile shaft, and a 
different set is used to model the pile tip, even if 
shaft and tip rest in the same sand deposit.  

Robust and reliable modeling of sand behavior 
may be better achieved if routine computational ge-
omechanics benefits from some improvements in-
cluded in advanced models available in the academic 
environment. These “advanced” features are well-
known to practitioners and routinely accounted for 
in hand-made computations. Some of them are: 

i) different plane strain and triaxial compression fric-
tion angles; ii) pressure dependent peak friction an-
gle; iii) effects of particle crushing; iv) different di-
latancy ratios in compression and extension tests; 
and v) the possibility that a sand specimen has to be 
both heavily overconsolidated and contractive, or 
normally consolidated and dilatant.  

The success of a novel constitutive model de-
signed for routine analyisis can be ultimately meas-
ured by it’s degree of usage and, by the time it is in-
troduced to the geomechanics community, by its 
ease to be understood and accepted. The most im-
portant decision that a model-builder can make to 
achieve this objetive is to select few, easily under-
standable input parameters and use well established 
formulas wherever applicable.  

The model presented here is the monotonic subset 
of a more general constitutive model for sands called 
ARENA and developed at the University of Buenos 
Aires, Argentina. 



2 MODEL FORMULATION 

2.1 Elasticity 

Isotropic, pressure and void ratio dependent hypo-
elasticity is adopted. Expressions proposed by 
Pestana (Pestana&Whittle 1995) and Hardin (Har-
din&Richart 1963) were selected because they have 
material parameters not dependent on pressure or 
void ratio. These are 
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where K is bulk modulus, G is shear modulus, cb, cs, 
ce, and m are material parameters, p is mean pressure 
and pref is a reference pressure. e0 is the zero-stress 
void ratio, obtained by an elastic unload from cur-
rent void ratio e to p = 0 KPa. 
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2.2 Sources of inelasticity 

The mechanical behavior of sands depends mainly 
on the resistance of particle contacts to sliding in 
shear and crushing in compression.  

While the physical phenomena that governs both 
deformation mechanisms are inter-linked and not 
perfectly understood, the conceptual problem can be 
splitted for modeling purposes into the effects of 
shear at constant mean pressure and proportional 
compression. 

2.2.1 Shear loading 
In a typical triaxial test, deformation in shear is gov-
erned by the change of stress-ratio, measured in ten-
sor p=r s  or scalar form r = r . p= −s Iσσσσ  is the 
deviatoric stress tensor, σσσσ is the stress tensor and I is 
the unit tensor. In general stress space, however, the 
obliquity of the stress state has no unique definition. 
One suitable scalar measure is the aperture of the 
Matsuoka–Nakai (Matsuoka&Nakai 1974) cone 
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2.2.2 Proportional compression 
In a typical oedometer compression test all stresses 
grow proportionally, forcing particles to slide, roll 
and crush to a more dense packing. The relevant 
stress measure is the major principal stress σ1 but, if 
the stress ratio is known, p can be used as a more 
convenient stress measure. In a general compression 
test, however, obliquity varies during compression, 
and a cap closure must be used. 

2.3 Effect of mean pressure on inelastic behavior 

Both shear and compression behavior depend on 
mean pressure p, void ratio e and relative density Dr 
for a given sand. For extreme high stresses, an ulti-
mate e - p relationship was determined by Pestana 
(Pestana&Whittle 1995) in the form 

1

ult r refp e p pρ−=  (4) 

where pr and ρ are material parameters. Pestana 
(Pestana&Whittle 1995) shows that ρ lies in the 
range 0.36 < ρ < 0.45 for many sands. Because ρ  
has little influence in the behavior of sands at engi-
neering stress levels, it is accurate enough to take 
ρ = 0.40 and define the crushing parameter 
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Thus, if 1χ ≪  particle crushing is negligible and 
both dilatancy and compression stiffness depend on 
relative density only. On the other side, if  1χ ≃ , no 
dilatancy occurs and compression behavior depends 
mainly on the strength of the grain material. 

2.4 Shear strength 

2.4.1 Peak friction angle 
Loose sands contract during drained shear until a 
critical void ratio ec and a critical friction angle φc 
are reached (Casagrande 1936, 1975). Dense sands 
dilate until they reach the same state {ec, φc} but, 
while dilating, the instant mobilized angle of friction 
is higher than φc up to a peak value φf. 

Under high pressure, no dilation occurs and there-
fore φf = φc (De Beer 1965). Bolton (Bolton 1986) 
took into account the dependency of φf on both stress 
and density through the expression 

3 ln 3f c r
KPa

p
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Parameter Q accounts for particle strength. Crushing 
resistance of a given sand, however, depends both 
on particle strength and void ratio. This fact can be 
better accounted for with the modified expression 



[ ]3 ln 2f c rDφ φ χ= − ° − °  (7) 

Data used by Bolton (Bolton 1986) to calibrate (6) is 
matched by (7) within 1.5°. An upper limit for engi-
neering analysis φmax is obtained by computing (7) 
with the minimun void ratio emin and for a low pres-
sure p=100 KPa. Expression (7) predicts φf  < φc if 
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which means that the sample must densify to reach  
{ec, φc} . If contraction is impeded, so-called lique-
faction occurs.  

2.4.2 Failure surface in shear 
φf is a parameter of the Mohr- Coulomb failure 

criterion. In the present model, the Matsuoka-Nakai 
criterion (Matsuoka&Nakai 1974) is adopted and φf  
is used to calibrate it. The failure surface in shear is 
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where µf = 8 tan
2
[φf] is a strength parameter that in-

herits dependence on Dr and χ.  
The selection of a three invariant failure criterion 

like (9) accounts for the difference between plane 
strain and triaxial compression friction angles, 
whereas it’s calibration using (7) accounts for the 
dependency of peak friction on density and mean 
pressure. Fig. 1 shows the failure surface in shear, 
while Fig. 2 shows the calibration of (7) for Sacra-
mento sand (Lee 1967).  

 

Fig. 1. Curved failure surface in shear, accounting for pressure, 
density and stress – path dependent peak friction angle. 

2.5 Shear plasticity 

2.5.1 Loading surface and dev-plastic strain 
The loading surface is the Matsuoka-Nakai cone 
passing through the current stress state 
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Peak friction angle - Sacramento Sand
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Fig 2. Calibration of (7) for Sacramento sand. Experimental 
data after Lee, 1967. 

 
where µ is an internal variable. The plastic strain in-
crement in shear p

s s sλ= mɺɺεεεε  is governed by the non-
associative tensor field (Macari 1989) 
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where 1
3

: ,d

s s s= −n n n II  ss F= ∂ ∂n σσσσ , β is a dila-
tancy variable and λs is a plastic multiplier. 

2.5.2 Dilatancy 
β is computed after Rowe’s strength-dilatancy 

theory (Rowe 1962). Rowe introduced the expres-
sion in out cvW W N= , Win and Wout being the work 
done by and against the surrounding media, 

( ) ( )1 sin 1 sincv cv cvN φ φ= + +  and φcv the constant-
volume friction angle. 

Due to deviatoric associativity, ms shares eigen-
vectors with σσσσ, a fact that allows for the computation 
of β in their common principal stress space, where  
σσσσ →{σ1, σ2, σ3} and ms →{ms1, ms2, ms3}. The ex-
pressions are 
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φcv depends on mineralogy, density and particle 
shape. A convenient expression, following concepts 
by Horne (Horne 1965, 1969) and introduced here is 
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These expresions account for contractive – dilatant 
behavior, lower φcv values for dense samples and 
low confinement, and a distinct response in triaxial 
compression, plane strain and triaxial extension.  



Fig. 3 shows the dilatancy coefficient β as a func-
tion of σ1/σ3 and σ2/σ3 ratios in the range 1 to 5, for 
the particular case Ncv = 3.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Stress – ratio dependent dilatancy coefficient. 

2.5.3 Hardening function in shear 
Duncan-Chang’s hyperbolic law (Duncan&Chang 
1970) for monotonic loading is the most frequently 
used stress-strain law for sands. Applied to shear 
modulus it yields 
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In (14), Gt is the tangent shear modulus, Gi is the 
“static initial” shear modulus, and Rf is the failure ra-
tio (Duncan&Chang 1970, Duncan et al 1980, Nu-
ñez 1995). The hyperbolic law can be adapted to the 
Matsuoka-Nakai criterion and converted to a harden-
ing function for primary loading 
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In the above expression, Gi is pressure and density 
dependent, and a dedicated set of material parame-
ters should be adopted to calibrate it. To avoid these 
extra parameters, concepts introduced by Trautmann 
and Kulhawy (Trautmann&Kulhawy 1987) can be 
exploited to get the relationships 
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where ( ) ( )maxtan tan tan tanf c cφ φ φ φΨ = − −  is an in-
direct measure of stress level and density. Expres-
sions (16) were calibrated to match data by Duncan 
(Duncan et al 1980) and Seed (Seed et al 1984). For 
instance, a dense sample under low stresses has a 
“initial static” to “elastic” stiffness ratio Gi/G ~ 1/2 
and a failure ratio Rf ~ 0.9, whereas the same sample 
under high stresses shows Gi/G ~ 1/5 and Rf ~ 0.7.  

2.6 Plastic compression 

2.6.1 Yield surface 
Murata and Miura (Murata&Miura 1989) proposed a 
closed yield surface for sands in the low and high 
pressure range. It’s expression is 

( )( ) [ ]2
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where η1 is a material parameter and pc is the pre-
consolidation pressure. An alternative expression 
having a Matsuoka-Nakai shaped cross section, de-
rived from Sfriso (Sfriso 1996), is 

[ ]ln 0c cF M p pη= + =  (18) 

Fig. 4 shows a trimmed side and a front view of 
(18). Three slices have been cut from the latter to 
show the complete surface closing towards its apex. 

 

  

Fig 4. Partial side view and front view of the cap closure.  

2.6.2 Plastic strains 
Associative cap plasticity is adopted. Plastic strains 
in compression are computed using p

c c cλ= mɺɺεεεε , 
where c c c=m n n , c cF= ∂ ∂n σσσσ  and λc is a plastic 
multiplier. While (17) was intended to model both 
shear and compression behavior of sands, (18) only 
serves as a cap closure. To avoid unrealistic dila-
tancy in proportional compression, η is solved out to 
yield : 0c =I m  at failure. The expression is 
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The intersection between the cap closure (18) and 
the loading surface (10) is a planar curve entirely 
contained in a deviatoric plane in stress space.  

2.6.3 Hardening function in compression 
Relative density dominates low pressure stiffness in 
isotropic compression, while particle crushing is the 
driving mechanism in the high pressure range (Rob-
erts&De Souza 1958, Schultze&Moussa 1961, 
Pestana&Whittle 1995). In this model, these two 
stress regions are modeled separately via distinct re-
duction factors Cl and Ch applied to the elastic bulk 
stiffness /

p
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where l and h stand for low and high pressure. In-
termediate response depends on the contribution of 
both mechanisms via a weighting function 

( ) ( )1 1
2 1 1

2 2
rerf Dζ χ = + + −   (21) 

Oedometric compression and isotropic compression 
of a given sand yield approximately the same σ1 − εv 
curve. This allows for the extension of isotropic 
compression relationships to general stress space. 
The adopted hardening function in compression is 
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2.7 Behavior in tension 

No tensile stresses are allowed for. If a strain path 
leads to tensile stresses, the response is zero stress, 
zero stiffness and all internal variables are reset. 

2.8 Input parameters 

Input parameters are eight: emin and emax, min / max 
void ratios needed to compute Dr; cb and m for bulk 
stiffness; cs, ce and m for shear stiffness, φc for criti-
cal state friction angle and pr for particle crushing.  
Of these, only cb and pr, adopted from Pestana’s 
compression model, need some comment. pr can be 
best calibrated using a series of triaxial compression 
tests of dense samples, performed over the maxi-
mum available pressure range, or estimated from 
available data on the dependence of peak friction 
angles on mean pressure (see, for instance, Duncan 
et al 1980). cb can be readily computed from the re-
bound curve of an oedometer test of a dense sample, 
where plastic deformations developed during 
unloading are negligible. It can also been estimated 
from available data and correlations (see, for in-
stance, Seed et al 1984). 

3 MODEL IMPLEMMENTATION 

The model was integrated through a fully implicit, 
generalized plasticity algorithm in strain space. De-
tails of the numerical issues have been presented 
elsewhere (Sfriso 2006a, b). The model was im-
plemmented in Plaxis V8.2 as an user-defined 
model. The DLL library and user maual is available 
for download at www.fi.uba.ar/materias/6408. 

4 MODEL VALIDATION 

Fig. 5 shows the predicted vs. measured behavior of 
Sacramento river sand in isotropic compression (Lee 
1967). Adopted parameters are shown in the figure.  
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Fig. 5. Predicted vs. experimental results for Sacramento river 
sand in isotropic compression. Data from Lee, 1967. 

 

Fig. 6 shows the numerical simultation of oedometer 
tests of normally consolidated Sacramento river 
sand, while Fig. 7 reproduces the simulation of the 
same tests on samples preconsolidated to σ1c = 100 
KPa. While no slope change is observed at σ1c for 
the densest OC sample, a clear change in overall 
stiffness is predicted for the loosest one.  

 

Oedometric compression - NC behavior 
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Fig. 6. Plaxis simulation of an oedometer test of a normally 
consolidated sample of Sacramento river sand.  

 

Oedometric compression - OC behavior 
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Fig. 7. Plaxis simulation of an oedometer test of a over con-
solidated sample of Sacramento river sand.  



Fig. 8 shows the calibration of the model for the 
monotonic undrained shearing of Nevada Sand. Data 
was obtained from Arulmoni et al (Arulmoni et al 
1992). Further information can be found elsewhere 
(Sfriso 2006a, b). The difference bewween the pre-
dicted and observed pore pressure response largely 
obeys to water cavitation in the experimental test.  
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Fig. 8. Predicted and observed behavior of Nevada sand during 
undrained shearing. Data from Arulmoni et al, 1992. 

5 CONCLUSIONS 

A constitutive model for the monotonic behavior of 
sands has been presented. The model uses eight ma-
terial parameters to account for many aspects that 
are not included in other models oriented to routine 
analyses, namely the effect of particle crushing on 
peak strength and compression stiffness and a 3D 
implemmentation of strength – dilatancy theory.  

The model has been calibrated using widely ac-
cepted expressions by Hardin (Hardin&Richart 
1963), Duncan (Duncan et al 1980) and Seed (Seed 
et al 1984). Parameters have been chosen, whenever 
possible, among those most accepted by geotechni-
cal engineers. Most of them have large available da-
tabases gathered during decades of routine usage.  

Despite the relatively few material parameters 
used, the model retains an acceptable degree of pre-
dictive capability for many problems, including the 
behavior of foundations and slopes.  
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