An Overview Of Lithium Brine Exploration for Resource Estimation

Camilo de los Hoyos

Ph.D, Senior Consultant (Geochemistry & Hydrogeology) <u>cdeloshoyos@srk.com.ar</u>

SRK Consulting Argentina

Contributors

- J. Aiken, R-SME (Tucson USA)
- R. Bowell, Ph.D. (Cardiff UK)
- T. Braun, M.S. (Denver USA)
- P. Cortegoso, M.S. (Denver USA)
- R. Howell, M.S. (Denver USA)
- B. Labarca (Santiago CL)
- B. Luinstra. Ph.D (Perth AU)
- D. Sánchez (Salta AR)
- V. Ugorets, Ph.D. (Denver USA)

📌 srk consulting

Lithium Brine Deposits

Bradley et al., 2013

Geology Of Salars: Mature and Immature

Brine Resource: Challenges

- Dynamic resource: it flows either naturally or by pumping
- Weather: precipitation can affect grade distribution
- Resource volume
 - 1. How to define resource lateral limits?
 - 2. How to link aquifer lithology with brine grade?
 - 3. Effective porosity, Sy or Ss?
- Dilution: fresh water lateral inflow (recharge)

Brine Resource: Classification

Secondary permeability, low confidence in hydraulic connectivity and/or grade

Physical evidence of sufficient hydraulic conductivity and transmissivity, statistical confidence in grade

Technical and consistent support resulting in 3D model of hydrolithology and grade

Mineral Resource and Reserve Reporting For Brine Deposits

Geologic Model Recoverable volume In-situ grade Classification Preliminary Dynamic model Produced brine composition Economics

o Pilot test for L brine Detailed Dynami Model Conversion of resp/rce to eszrve

🛛 📌 srk consulting

Application of Hydrogeological Concepts

Brine Volume

Brine volume / grade distribution

- Geological mapping
- Surface brine sampling: pitting
- Geophysics (e.g. geoelectrics, CSAMT)
- Diamond drilling: core and brine sampling
- Downhole lithology / geophysics

Aquifer Characterisation

Brine aquifer characterisation

- Sy: ex-situ lab testing on cores (e.g. Relative Brine Release Capacity, RBRC)
- Hydraulic conductivity, Ss, anisotropy: field hydraulic testing
- Dispersivity: field tracer tests
- Dilution potential: fresh water balance

Ex-situ Sy by RBRC: Typical values

	P_t site lab		P_t BGS lab		P_e BGS lab		S_y BGS lab	
	mean	SD	mean	SD	mean	SD	mean	SD
Sand dominant	0.31	± 0.06	0.32	± 0.08	0.26	± 0.07	0.13	± 0.07
Silt & sand-clay mixes	0.37	± 0.08	0.38	± 0.11	0.32	± 0.09	0.06	± 0.04
Clay dominant	0.42	± 0.07	0.44	± 0.06	0.37	± 0.06	0.02	± 0.02
Halite dominant	0.27	± 0.14	0.29	± 0.10	nd	nd	0.04	± 0.02

Source: Hydrominex Geoscience Consulting

In-situ Aquifer Characterisation

Constant rate pumping test

- Transmissivity / hydraulic conductivity
- In-situ Sy, Ss

Step-drawdown pumping test

- Well eficiency
- Predictive analysis

Aquifer Anisotropy

Directionally controls drawdown propagation and brine movement

Please assess anisotropy and be a good neighbour!

Brine Resource

Brine chemistry / quality

<u>3D grade distribution</u>: Li, K, Mg, B; SO4, CO3 etc. <u>QA/QC program</u>: representability, comparability, reproducibility, precision <u>Key chemical ratios</u>: Mg/Li (<10), SO4/Li (<30), B/Li (<3)

Brine Resource: Geological Model

In situ drainable resource model:

- Geology + geophysics
- Core lithology + hole geophysics
- Lab and field Sy, Ss
- Hydrostratigraphic units
- Brine chemistry
- Geostatistics

Lithium Brine: Key points

- Diamond drilling exploration: the expert is the geologist
- Classic hydrogeology applied to hyper-saline solutions
- Brine reservoir assessment based on petrophysics and aquifer hydraulics
- Continuous brine quality assessment
- Main extraction mining engineer: <u>Hydrogeologist</u>
- Main process mining engineer: <u>Chemical Engineer</u>
- Main mine planning tool: Groundwater / solute transport numerical model
- Dynamic modeling: update and calibration throughout the LoM

Thank you for listening

