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1.  Introduction 

 

Properties of geotechnical materials are affected by 
various factors during their formation process, such 
as properties of parent materials, magmatism, sedi-
mentation, weathering, erosion processes, and there-
fore, vary spatially. Additionally, several uncertain-
ties are incorporated in the estimation of the 
properties as result of imperfect test equipment and 
procedural errors, statistical uncertainty arising from 
insufficient number of tests, and the transformation 
uncertainty related to the interpretation of results 
(Cao et al., 2017). For example, if Hoek-Brown rock 
mass failure criterion is adopted, there is error and 
variability associated to the results of triaxial and un-
confined compressive tests, and the number of avail-
able tests is commonly restricted. Also, the values of 
the parameters depend on the method of fitting (e.g. 
non-linear least squares or Bayesian sampling, abso-
lute residual or relative residual, etc.)  
 
Probability theory and statistics gives a framework to 
rationally incorporate these uncertainties into ge-
otechnical analysis, allowing to measure the perfor-
mance of geotechnical structures statistically, for ex-
ample, through the reliability index, , and the 
probability of failure, PoF. The last one, defined as 
the probability of performance requirements not be-

ing satisfied, has grown in use as an acceptance crite-
rion because combined with risk assessment is a good 
option to deal with uncertainty and variability, and 
several methods have been proposed to estimate it, 
such as the first-order second-moment method 
(Christian et al., 1974; Hassan & Wolff, 1999), the 
first-order reliability method (Low et al., 1988; Low, 
2003), response surface methods (Morgan & Hen-
rion, 1990 and Tandjiria at al., 2000) and direct 
Monte Carlo simulation method (Griffiths & Fenton, 
2004; El Ramly, 2005). The response surface method 
has been used in risk-based slope design applications 
as described by Steffen et al. (2008) and Contreras 
(2015). This approach has the advantage of combin-
ing the rigor of a Monte Carlo simulation with the 
practicality of requiring fewer FS calculations with 
the geotechnical model to construct the response sur-
face used as a surrogate model in the process. 
 
On the other hand, for rock masses is generally ac-
cepted to use non-linear Hoek-Brown (H-B) failure 
envelopes. Hoek (2007) recommends, where possi-
ble, to apply the criterion directly; however, given 
that many geotechnical design calculations are writ-
ten for the Mohr-Coulomb failure criterion (M-C), it 
is often necessary to calculate equivalent rock mass 
cohesion, ce, and friction, e (Eberhardt, 2012). This 
is particularly true in rock slope analyses, for exam-
ple, to include the weakness induced by joints, it is 
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common to use a linear weighing of the strength con-
tributed by the rock mass and joints fractions of ma-
terial (e.g. Jennings, 1970); therefore, linear failure 
envelopes, as the Mohr-Coulomb criterion, are used 
to represent equivalent strength. 
 
The linearization of H-B criterion is done by fitting 
an average linear relationship to the H-B curve in the 
range t < 3 < 3max, process which involves balanc-
ing the areas above and below the M-C plot (Hoek et 
al., 2002). The output of this process are explicit ex-
pressions for e and ce in terms of H-B parameters (a, 
s, mb, ci, GSI, D) and 3max. As a result, the lineari-
zation of H-B parameters implies a non-lineal relation 
between e and ce. 
 
If H-B parameters are considered as random varia-
bles, the linearization operation propagates their un-
certainties (intrinsic to their distributions), generating 
random variables (friction) and C (cohesion) for 
which we do not know their distributions a priori, but 
we know that are correlated. 
 
However, because lack of data, it is common to as-
sume that strength properties are independent random 
variables. If a Mohr-Coulomb (M-C) failure criterion 
is used to model the material failure envelope, this 
means that friction angle () and cohesion (c) are con-
sidered independent; however, cross-correlation be-
tween  and c has been widely reported (e.g. Young, 
1986; Di Matteo et al., 2013), and ignoring their 
cross-correlation may lead to the underestimation or 
overestimation of the failure probability (e.g. Jiang et 
al., 2014; Wu, 2013; Johari & Mehrabani Lari, 2017). 
Other option is to use linear correlations between -c, 
which can be obtained through laboratory tests, but 
normally the available information is not enough to 
statistically define this coefficient. 
 
Furthermore, the H-B random variables can also be 
correlated to each other, as for example the reasona-
ble correlation between the ratio ci /t and the param-
eter mi (Sheorey, 1997); therefore, in the same sense 
that for M-C criterion, neglecting cross-correlation 
between H-B parameters could generate underestima-
tion or overestimation of PoF. 
 
For this reason, in this paper we study the uncertainty 
propagation from Hoek-Brown parameters to e and 
ce, i.e. we study the distributions of random variables 
(friction) and C (cohesion) obtained from the H-B 
linearization; the influence of e-ce cross-correlation 
induced by linearization in the FS and PoF, and fi-
nally, we study the effect of the correlation of H-B 
parameters in FS and PoF. 

This paper is organized as follow: Section 2 outlines 
the methodology used along this paper. Section 3 
shows the obtained results and the analysis of them, 
and finally, in Section 4 the conclusions of this work 
are presented. 
 
2.  Methodology 

 

The scheme of the work of this paper is shown in Fig-
ure 1. The first step consists in to generate random 
variables for friction  and cohesion C, that comes 
from linearization of Hoek-Brown parameters, which 
are in turn, correlated random variables. For simplic-
ity, we select mi and ci as random variables (M and 
S), and the other properties which not depend on them 
(GSI, D) are considered as constants. 
 
Uniform and normal probability density functions 
(pdf) were considered for M and S. The former one 
because is the pdf with largest entropy, i.e. minimizes 
the information assumed into the distribution, while 
the later one because is the commonly found distribu-
tion for data. M and S distributions are generated with 
specific correlations S, imposed by means of 
Gaussian copulas. Linearization of M and S generate 
distributions of and C. At this point, we study the 
effect of S over the distribution of and C. 
 
Pairs of discrete values of e and ce, with correlation 
coefficient c induced by the linearization, are used 
to calculate discrete values of FS. By doing this a 
large number of times, we can study the distribution 
of FS and obtain the PoF as the number of simulations 
with FS<1 divided by total number of simulations. 
Additionally, we make Monte Carlo simulations over 
and C to obtain pairs (e, ce) with different correla-
tion coefficients c. With this new re-sampling we 
calculate FS and study the influence of c in PoF. 
Finally, we change the values of S to observe its 
influence in FS and PoF. 
 

 
Figure 1. Scheme which summarized the work done in this pa-
per. From correlated H-B properties, M-C properties are ob-
tained and the effects on FS and PoF are studied. 
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Because PoF evaluation implies the calculation of 
thousands of FS computations, FS were calculated by 
means of the Equation (1) (Carranza-Torres & Hor-
mazábal, 2018), allowing a quick calculation of PoF. 
Additionally, to have an explicit expression for the 
Factor of Safety can be advantageous during the anal-
ysis of the results:  
 

𝐹𝑆

tan ∅
=

1

tan 𝛼
 + 

𝑔1(𝛼)

𝑋𝑎𝑑
 +  

𝑔2(𝛼)

𝑋𝑎𝑑𝑔3(𝛼)            (1) 
 
Where Xad is the dimensionless parameter given by 
Equation (2), and gi() are cubic polynomials of the 
slope angle given in detail in Carranza-Torres & Hor-
mazábal (2018).  
 
𝑋𝑎𝑑 =

𝛾 𝐻 tan ∅

𝑐
                   (2) 

 
Hence, Equation (1) depends on cohesion (c), friction 
angle (, slope height (H), unit weight ( and slope 
angle (), and is valid for slopes of arbitrary height 
and inclination in homogeneous/isotropic dry ground, 
that obeys the Mohr-Coulomb shear failure criterion. 
 
3.  Results 

 
3.1 Effect of linearization to C and  

The objective of this section is to obtain an idea of 
how variability of mi and ci, represented by the ran-
dom variables M and S, is propagated by the lineari-
zation in the random variables C and : 

 
𝐿(𝑀, 𝑆) → (𝐶, φ)               (3) 
 
Where L represents linearization operation. Figure 2 
shows how (mi, ci) points obtained from uniform (a 
right side) and normal truncated (at left side) distribu-
tions are mapped into e - ce space by L. Red colors 
identify zones with more density of points. The spa-
tial bounds of e - ce are clearly non-linear, and there 
is a strong loss of symmetry in their distribution; 
therefore, the obtained probability density functions 
for C and  have skewness, as shown in Figure 3, 
where it is possible to see a normalized histogram of 
e  obtained from uniform distributed M and S. 
 
Several runs were done for different ranges of mi, ci, 
where minimum, maximum and mean distribution 
values were selected randomly. We observe the be-
havior of the obtained distributions in terms of their 
‘shape’, and their first, second and third moments. We 
made the following general conclusions: 

 There is a great variability in the resulting 
distributions C and  depending for example 
in the range of input values mi, ci. Hence, is 
not possible (the option of an analytical cal-
culation was not considered in this study) to 
indicate a close expression for the resulting 
distributions and their parameters.   

 As expected (see Eberhardt, 2012), sample 
means of M have a positive correlation with 
sample means of , while S is correlated with 
C. M and C appears uncorrelated, same that 
S and . The effect of correlation MS is neg-
ligible. 

 The same as above was observed for vari-
ances. It was also observed that when M var-
iance increase, the statistical dispersion of 
is also increased (Figure 2). The same for 
S and C. 

 C and  are truncated pdf. This behavior is 
expected because M and S are also truncated 
pdf. 

 In general, the shape of the obtained pdfs, C 
and , are similar to the ‘root’ pdfs, M and S, 
i.e. if M and S distributed as uniform, then C 
and distribute as uniform; however, as var-
iance of M and S increase, skewness also in-
creases in C and , where C is more prone to 
suffer positive skewness, while  negative 
skewness (see Figure 4). 

 When MS = 0, C and are more prone to dis-
tribute as normal. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Comparison of variances of M and . It is observed 
that variance of (output) increase when variance of M (input) 
increase. The statistical dispersion is also increased when vari-
ance of M increase. 
 
Therefore, if variabilities of mi, ci are non-negligi-
ble, it is necessary to incorporate their effect in 



probabilistic analyses, calculating their means, 
variances, verify how correct is the use of symmetric 
distributions of C and , etc. A Monte Carlo simula-
tion appears as a simple method to study the statistical 
characteristics of C and . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Scatter plots of discrete points of (mi, ci) and (e, ce) 
where red color represent more density. At the upper left side, 
(mi, ci) points obtained from uniform distribution and below 
him, the corresponding points (e, ce). At the right side, (mi, ci) 
points obtained from normal distribution and the corresponding 
(e, ce) points. 
 
It is important to mention that pairs (e, ce) obtained 
from linearization of H-B, and used to construct C 
and  are correlated and follows a non-linear rela-
tion. We can be tempted to use these probability dis-
tributions of C and , like the one in Figure 4, and 
calculate PoF without considering their correlation 
c (e.g. by a MonteCarlo simulation), but this proce-
dure could generate an error in PoF calculation. In 
fact, the use of the linear Pearson correlation coeffi-
cient could be inadequate to characterize the correla-
tion between e and ce, due to a marked non-linear 
behavior, and a different correlation coefficient, as 
the distance correlation (Szekely et al., 2007), could 
be better to represent how c and are related. 
 

 
Figure 4. Normalized histogram of e, representing distribu-
tion, that was obtained from uniform distributions of M and S, 
showing positive skewness. 
 

3.2 Effect of MS on PoF  
 
Because mi and ci are the variables of interest, fixed 
values of H=250m, , kN/m3, and ru=0.5 
were considered in Equation (1). On the other hand, 
to calculate the equivalent friction and cohesion, a 
GSI=40 and D=0.7 were used (the epistemic uncer-
tainty in these last parameters was not considered in 
this study, because it is focused in the variables with 
natural variability (Baecher & Christian, 2003), but 
their incorporation is an ongoing work). The FS func-
tion obtained with Equation (1) is shown as contour 
plot in Figure 5. 

 
Figure 5. Contour plot representation of the Factor of Safety ob-
tained with the Equation (1) (Carranza-Torres and Hormazabal, 
2018) in terms of cohesion and friction. Red line shows the iso-
contour of FS=1. 
 
Clearly, it is non-common to have an explicit repre-
sentation for the FS as Figure 5; however, we can take 
advantage of this to better understand the influence of 
MS in PoF. Figure 6 shows the location of 4,000 pairs 
(c, ), where the red ones were obtained from linear-
ization, and the blue ones represent uncorrelated data 
(c=0). 
 

 
Figure 6. Random pairs (c,) over the contour representation of 
FS. In blue, uncorrelated points, while red points represent cor-
relation points obtained from H-B linearization. 
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For uncorrelated data (c=0), all the pairs (c,) in 
range Rc × R (where Ri =[imin,imax]) have the same 
probability to occur; therefore, the PoF can be inter-
preted as the ratio between the area in which FS<1 
and the total area Rc × R 
 
PoF(ρ𝑐φ = 0) ≈

∫ ∫  𝐻(−𝐹𝑆(𝑐,φ)) 𝑑𝑐 𝑑φ𝑅φ𝑅𝑐

𝑅𝑐 𝑅φ
        (4) 

 
Where H() is the Heaviside function. On the other 
hand, Figure 6 shows that linearization restricts the 
area of feasible pairs (c,). In this case PoF could be 
calculated similarly to the former case as: 
 
PoF(lin) ≈ (∫ 𝐻(−FS(c, φ))dω

ω
)/(∫ 𝑑ω

ω
)        (5) 

 
Where  is the region of feasible pairs (ce, e). There-
fore, the correlation between M and S, S, modifies 
at first the set of possible values for mi and ci. Figure 
7 shows in scatter plots, the sets of possible values of 
mi and ci obtained for a negative correlation  
S =-0.9. 
 

 
Figure 7. Scatter plots of the set of possible values of mi and ci 
for MS=-1.  
 
This effect impact directly in the set of feasible values 
of pairs (c, , and therefore, in the results of PoF. To 
evaluate the effect of the correlation Figure 8 shows 
PoF results obtained for different values of correla-
tion S. It is observed that for this case, PoF increase 
when the correlation is positive, and decrease when 
correlation is negative, existing a difference of 8% be-
tween minimum and maximum values of PoF. In the 
case MS=-1 the region of feasible values of c and , 
must be near to parallel to the iso-contours of FS (see 
Figure 5) and to be above of the iso-contour FS=1, 
which explains the PoF near to zero. On the other 

hand, the region of feasible points MS=1 is near to 
perpendicular to iso contours, which explains that the 
maximum values of PoF are encounter for this value 
of MS; however, this behavior cannot be generalized, 
and each case needs to be analyzed separately. 
 
These results indicate that this correlation is an im-
portant input in probabilistic studies and needs to be 
considered, and a possible way to do it is by means of 
Bayesian methods as in Contreras et al. (2016). 

 
Figure 8. Effect of MS on PoF. 
 
4. Conclusions 
 
In this paper, we analyze the effect of the linearization 
of Hoek-Brown criterion commonly done in slope 
stability, into Factor of Safety and Probability of Fail-
ure calculations, considering parameters mi and ci as 
random variables. 
 
First, we observe that H-B linearization generates 
skewness in the distributions of c and , and therefore, 
considering symmetric distributions C and  could 
induce inaccuracies in results. 
 
The correlation induced by H-B linearization needs to 
be considered, because PoF results depend greatly of 
the correlation of c,  Therefore, pairs of points (c, 
) generated during linearization must be used for FS 
calculations, and no pairs (c, ) randomly sampled 
from pdf’s C and , for example by Monte Carlo. 
 
Depending on the range of mi and ci, the correlation 
coefficient of c and  after linearization varies from -
1 to 1. Sometimes, non-linear relation is found be-
tween c and , which indicate that it is better to use a 
correlation measurement different that the classical 
Pearson correlation (linear). 
 



Finally, it was observed that the correlation between 
the inputs H-B parameters also has an important ef-
fect in PoF results. This correlation is difficult to 
measure, because depends, for example, in the 
method of fitting of experimental points, but if exists 
can have a non-negligible effect in results. 
 
It is important to mention that GSI and D parameters, 
which have an important effect in equivalent cohesion 
and friction were not considered in this study, but 
their influence is an ongoing work. 
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