

19·20·21 NOVIEMBRE 2018



## SOME GEOTECHNICAL CONSIDERATIONS FOR PROBABILISTIC ANALYSIS IN SLOPE DESIGN

**ESTEBAN HORMAZABAL** 

Managing Director

SRK Consulting Chile





# Some geotechnical considerations for probabilistic analysis in slope design

## INTRODUCTION

- 1) GEOTECHNICAL CHARACTERIZATION.
- 2) BENCH BERM DESIGN.
- 3) INTERRAMP AND OVERALL SLOPE STABILITY.
- 4) GEOTECHNICAL RISK MAP.



#### Camera rotation $\Rightarrow$ geometrical cone in the stereographic projection.



Priest, S. D. (1985): *Hemispherical Projection Methods in Rock Mechanics*, George Allen and Unwin, London.





Stereographic projection from ATV survey in a geotechnical borehole.



#### Examples of natural joints/minor faults classified as mechanical.



#### Examples of wrong calculation of RQD.



| From_Depth | To_Depth | Interval | RQD_m | RQD_Pct |
|------------|----------|----------|-------|---------|
| 30         | 33       | 3        | 3     | 100     |



## Overestimation of FF/m and sub estimation on the classification systems indexes.

|           | 291,0     | Dea Dean Print   |           | 200    | Stored . | and the state | F.A.     | Sec. 19 | 7 3 3 |
|-----------|-----------|------------------|-----------|--------|----------|---------------|----------|---------|-------|
|           |           | Const les        | CHDT-JOST | 1 1    | 1        | te !          | - F.     | 20      | N. CO |
| 93.30     |           |                  | 2990      | NAME T |          |               |          |         | 293   |
| Deede (m) | Hasta (m) | Trama Malida (m) | 294,00    | CSL D1 |          |               | PMP1 LOO |         | 0'    |
| 291       | 294       | 0.55             | 10.67     | 20     | 25       | 48            | 26       | 35      | 3.36  |

Crushed material of 0,55m that can not be observed.

| 09.00 30  | 8.00      |                  | C. T        |         | A      |        | L.      |          |          | N. The |
|-----------|-----------|------------------|-------------|---------|--------|--------|---------|----------|----------|--------|
|           |           | Cingrel          | 234<br>PESA |         | 196    | 25     | W.      | 311, 30  | Here and | -      |
| Car fills |           | 312              | 8           |         |        |        |         |          | Vales.   |        |
| Desde (m) | Hasta (m) | Tramo Molido (m) | FF_FINAL    | (f/m) 0 | GSI_R1 | GSI_R2 | RMR_B89 | RMR1_L90 | RMR2_L90 | Q'     |
| 309       | 312       | 1.5              |             | 22.67   | 15     | 20     | 39      | 22       | 29       | 0.42   |

Crushed material of 1,5m that can not be observed.



#### FF/m calculation

In many database, FF/m is determined as joint total count of borehole length divided for the recovery length. No correction are applied based on dip angle different regarding with the borehole orientation:

$$FF = \sum_{i=1}^{N} FF_i \cos \theta_i$$

There is also corrections if Laubscher (1990) classification system need to be applied.

 TABLE II

 FACTORS TO GIVE AVERAGE FRACTURE FREQUENCY

| Sampling procedure                                   | Factor | Average frequency = Sum of individual FF/m (inverse of spacing) |
|------------------------------------------------------|--------|-----------------------------------------------------------------|
| a. One set of three sets on a line, or one set only  | 1,0    | 2                                                               |
| b. Two sets of three sets on a line or two sets only | 1,5    | _                                                               |
| c. All of the sets on a line or borehole core        | 2,0    |                                                                 |
| d. Two sets on one line and one on another           | 2,4    |                                                                 |
| e. Three sets on three lines at right-angles         | 3,0    |                                                                 |

| Desde (m) | Hasta (m) | RECUPERACIÓN (m) | J_30 (f/3m) | J_60 (f/3m) | J_90 (f/3m) | FF (f/m) | FF/m |
|-----------|-----------|------------------|-------------|-------------|-------------|----------|------|
| 411       | 414       | 3                | 4           | 2           | 0           | 2        | 3.03 |



ė RQD (%) FF/m 

**ORIGINAL DATABASE** 

**CORRECTED DATABASE** 



3rd South American Symposium on Rock Excavations

#### **UCS tests results**



#### **PDFs Distribution**





**srk** consulting 12

#### **Database Uncertainty**





Bedi & Harrison (2012)

Owing to the large number of discontinuities exposed daily in producing open pit mines, a probabilistic approach to evaluating the potential for blocks/wedges to fail is required.

A computer program which uses joints orientation, persistence and spacing statistics must be implemented to develop a probabilistic approach which allows rapid determination of the probability of failure of blocks/wedges for different benches geometries.



By applying the keyblock analysis method of Goodman & Shi (1985) each simulated block can be evaluated to determine whether it is removable from the surrounding rock mass.



Removable blocks in a rock slope

Once a keyblock has been identified, its removability and sliding stability is assessed and accumulated so that the stability of a pit bench can be evaluated.



Random locations of blocks along a bench. Red blocks are unstable (SBlock output)



## Bench Berm Design

| Joint sets         Friction Cohesion         Bench and Fault         Stack and Bisk           Dientation         Dientation         Spacing         Length           Dientation         Dientation         Spacing         Length           P30         2000         120         61         45         85           P30         2000         120         61         45         85         150         120         240         p           P50         1880         220         270         215         278         150         120         240         p           F60         830         180         81         65         113         300         240         420         p           Random set         00         00         00         00         00         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Init lets         Friction Cohesion         Bench and Fault         Stack. and Risk           Operation         Dp of Range         Man         Max         Include?           790         3000         130         81         85         150         120         240         p           650         180         220         220         276         376         150         120         240         p           150         120         240         p         150         120         240         p           150         120         240         p         150         120         240         p           150         120         120         240         p         150         120         240         p           150         120         120         120         p         150         120         140         p           150         121         17         129         150         120         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p         p </th <th>Joint sets<br/>Dip<br/>[79.0<br/>[77.0<br/>[85.0<br/>[16.0<br/>[46.0<br/>[53.0</th> <th>n<br/>Dip dr<br/>(300.0<br/>(189.0</th> <th>Range</th> <th>Spacing<br/>Mean</th> <th>T</th> <th>Bench</th> <th>and Fault</th> <th>Y</th> <th>Sta</th> <th>ack and Risk</th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Joint sets<br>Dip<br>[79.0<br>[77.0<br>[85.0<br>[16.0<br>[46.0<br>[53.0 | n<br>Dip dr<br>(300.0<br>(189.0          | Range      | Spacing<br>Mean | T    | Bench | and Fault | Y    | Sta  | ack and Risk |                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------|------------|-----------------|------|-------|-----------|------|------|--------------|--------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|
| Orientation         Spacing         Length           De         Dip dr         Rarge         Men         Min         Max         Include?           750         3000         130         80         140         50         120         240         pr           650         1830         220         121.6         178         150         120         240         pr           160         230         770         83         85         150         120         240         pr           160         230         770         83         65         113         300         240         420         pr           160         180         17.7         57         39         300         240         420         pr           160         180         17.7         57         39         300         240         420         pr           17.7         17.7         17.7         17.7         180         100         100         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Olientation         Spacing         Length           Dip dr         Rarge         Men         Min         Max         Include?           730         100         63         4.5         15.5         12.0         24.0         p           65.0         128.0         22.0         77.7         3.5         7.5         13.0         24.0         p           16.0         28.0         77.0         13.         5.5         11.3         30.0         24.0         p           16.0         28.0         77.0         7.3         5.7         5.9         30.0         24.0         p           30.0         18.0         18.3         5.5         11.3         30.0         24.0         p           80.0         18.0         18.3         5.5         13.3         0.0         24.0         p           80.0         0.0         0.0         0.0         0.0         0.0         p         p           Bandom set         0.0         0.0         0.0         0.0         p         p           View results         Start simulation         Quit         Quit         Quit         Quit         Quit         Quit         Quit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Orientatic<br>Dip<br>[79.0<br>[77.0<br>[85.0<br>[16.0<br>[46.0<br>[53.0 | n<br>Dip dir<br>[300.0<br>[9.0<br>[189.0 | Range      | Spacing<br>Mean |      |       |           |      |      |              |                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| Diertation         Spacing         Length           Dip         Dip di         Range         Mean         Min         Max         Include?           780         2000         120         60         140         150         120         240         p           950         100         61         4.9         85         150         120         240         p           950         1800         2270         216         37.8         150         120         240         p           950         1800         2270         71         57         93         300         240         420         p           160         230         180         8.5         11.3         300         240         420         p           530         470         80         21         1.7         2.9         600         640         p           Rendem set         00         00         00         00         p          Die         Image: Construction of the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Oliertation         Spacing         Length           Dip         Dip de         Rarge         Mean         Min         Main         Nain         Include?           780         2000         120         140         150         120         240         p           770         150         100         8.1         4.3         8.5         150         120         240         p           150         120         24.0         p         150         120         24.0         p           150         230         770         7.1         5.7         9.3         100.0         24.0         42.0         p           460         82.0         160         8.3         8.5         11.3         100.0         24.0         42.0         p           83.0         1400         1.7         1.7         2.5         60.0         40.0         64.0         p           Random set         0.0         0.0         0.0         0.0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td< th=""><th>0rientatic<br/>Dip<br/>[79.0<br/>[77.0<br/>[85.0<br/>[16.0<br/>[46.0<br/>[53.0</th><th>n<br/>Dip dir<br/>[300.0<br/>[9.0<br/>[189.0</th><th>Range</th><th>Spacing<br/>Mean</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0rientatic<br>Dip<br>[79.0<br>[77.0<br>[85.0<br>[16.0<br>[46.0<br>[53.0 | n<br>Dip dir<br>[300.0<br>[9.0<br>[189.0 | Range      | Spacing<br>Mean |      |       |           |      |      |              |                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| 10       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79.0<br>77.0<br>85.0<br>16.0<br>46.0<br>53.0                            | 300.0<br>9.0<br>189.0                    | 13.0       | 1.0.0.00        | Min  | Max   | Length    | Min  | May  | Include?     |                    |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |
| 1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1780       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800       1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1700       1800       100       180       180       110       120       140       P         680       100       181       185       110       120       140       P         680       180       120       120       140       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       P       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77.0<br>[85.0<br>[16.0<br>[46.0<br>[53.0                                | 9.0                                      | 1100       | 10.0            | 80   | 14.0  | 15.0      | 120  | 24.0 |              | Contraction of the | 8    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100            | 1000 11        |
| 100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100       120       126       127       126       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85.0<br>[16.0<br>[46.0<br>[53.0                                         | 189.0                                    | 110.0      | 161             | 4.9  | 85    | 15.0      | 120  | 24.0 |              |                    |      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1965. J        | 1. 19 6. 10    |
| 101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       101       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110       120       170       171       157       193       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       120       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.0<br>46.0<br>53.0                                                    |                                          | 22.0       | 27.0            | 21.6 | 37.8  | 15.0      | 12.0 | 24.0 |              |                    |      | AND 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10             | and the second |
| Image         Image <th< td=""><td>450       180       181       15       11.3       300       240       420       p         530       470       10       121       1.7       128       100       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140&lt;</td><td>46.0</td><td>29.0</td><td>77.0</td><td>7.1</td><td>5.7</td><td>9.9</td><td>30.0</td><td>24.0</td><td>42.0</td><td></td><td></td><td></td><td>Contraction of the local division of the loc</td><td>and the second</td><td>A States</td></th<> | 450       180       181       15       11.3       300       240       420       p         530       470       10       121       1.7       128       100       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140       140<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46.0                                                                    | 29.0                                     | 77.0       | 7.1             | 5.7  | 9.9   | 30.0      | 24.0 | 42.0 |              |                    |      | Contraction of the local division of the loc | and the second | A States       |
| 53.0       47.0       80       2.1       1.7       2.9       60.0       48.0       64.0       P         Rendom set       0.0       0.0       0.0       0.0       0.0       F       Image: Constraint of the set of the se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 530       470       80       [23       17       23       100       140       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53.0                                                                    | 83.0                                     | 18.0       | 81              | 6.5  | 11.3  | 30.0      | 24.0 | 42.0 |              | 100                | 96). | in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                | 17.30          |
| Random set     00     00     00     00     00     0       View results     Start simulation     Quit     Image: Control of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rendom set 00 00 00 00 00     View results Start simulation     Quit     Image: Contract of the second secon |                                                                         | 47.0                                     | 8.0        | 21              | 1.7  | 2.9   | 60.0      | 48.0 | 84.0 |              |                    |      | 1 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 - A - C      | - State        |
| View results Start simulation Quit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | View results Start simulation Quit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         | R                                        | landom set | 0.0             | 0.0  | 0.0   | 0.0       | 0.0  | 0.0  | - r          | 20 20              |      | and the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1000           |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |                                          |            |                 |      |       |           |      |      |              | 0                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |

## Bench Berm Design

## **I-Site Calibration**

|             | Dominio 1 |        |  |  |  |  |  |  |  |  |
|-------------|-----------|--------|--|--|--|--|--|--|--|--|
| DipDir 170° |           |        |  |  |  |  |  |  |  |  |
| ID          | Dip       | DipDir |  |  |  |  |  |  |  |  |
| 19          | 50        | 153    |  |  |  |  |  |  |  |  |
| 20          | 45        | 146    |  |  |  |  |  |  |  |  |
| 21          | 58        | 204    |  |  |  |  |  |  |  |  |
| 22          | 58        | 134    |  |  |  |  |  |  |  |  |
| 23          | 56        | 170    |  |  |  |  |  |  |  |  |
| 24          | 56        | 153    |  |  |  |  |  |  |  |  |
| 25          | 56        | 148    |  |  |  |  |  |  |  |  |
| 26          | 70        | 224    |  |  |  |  |  |  |  |  |
| 27          | 58        | 203    |  |  |  |  |  |  |  |  |
| 28          | 62        | 213    |  |  |  |  |  |  |  |  |
| 29          | 60        | 153    |  |  |  |  |  |  |  |  |
| 30          | 58        | 162    |  |  |  |  |  |  |  |  |
| 31          | 41        | 157    |  |  |  |  |  |  |  |  |
| 32          | 51        | 161    |  |  |  |  |  |  |  |  |
| 33          | 51        | 193    |  |  |  |  |  |  |  |  |
| 34          | 62        | 180    |  |  |  |  |  |  |  |  |
|             |           |        |  |  |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dominio 1                               |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------|
| 48<br>40 <sup>4</sup> 8 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28                                      | 17    |
| 35 y 36 39<br>38 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 33 19 21 32<br>31 31                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |       |
| - And | W + + + + + + + + + + + + + + + + + + + | Le Le |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s s                                     |       |

Dominio 1 DipDir 150° Dip DipDir ID 

→ srk consulting 18

#### **I-Site Calibration (Persistence)**





#### **Back-Break calculation**



This screen shows the probability of failure expressed as a depth of failure of a bench (SBlock output)

Back-break and spill material or pile of rubble (SBlock output)





#### **Cumulative Distribution for the Bench Widths**



90% of the benches will be greater than 9,5 m (SBlock output)

3rd South American Symposium on Rock Excavations



## Bench Berm Design

## Calibration



PoF > 30 %



20 % < PoF < 30 %



3rd South American Symposium on Rock Excavations



## Bench Berm Design

#### Calibration









#### Calibration







## **Example of Limit Equilibrium Method (GLE)**

3rd South American Symposium on Rock Excavations



#### **Interramp and Overall Stability Analysis**



#### Montecarlo simulation for calculated the FoS

3rd South American Symposium on Rock Excavations



#### Interramp and Overall Stability Analysis



### **Example of 2D Numerical Modelling Analysis.**





#### **Surface Response Method**





#### **Acceptability Criteria**

|             |                 | Acceptability Criteria |                        |                        |  |  |  |  |
|-------------|-----------------|------------------------|------------------------|------------------------|--|--|--|--|
| Slope Scale | Consequences of | Factor of Safety [FOS] | Factor of Safety [FOS] | Probability of Failure |  |  |  |  |
| ·           | Failure         | (min)                  | (min)                  | (max)                  |  |  |  |  |
|             |                 | (Static)               | (Pseudo-static)        | P[FOS≤1]               |  |  |  |  |
| Bench       | Low - High      | 1.1                    | N/A                    | 25 - 50%               |  |  |  |  |
|             | Low             | Low 1.15 - 1.2         |                        | 25%                    |  |  |  |  |
| Inter-ramp  | Medium          | 1.2                    | 1.0                    | 20%                    |  |  |  |  |
|             | High            | 1.2 - 1.3              | 1.1                    | 10%                    |  |  |  |  |
|             | Low             | 1.2 - 1.3              | 1.0                    | 15 - 20%               |  |  |  |  |
| Overall     | Medium          | 1.3                    | 1.1                    | 10%                    |  |  |  |  |
|             | High            | 1.3 - 1.5              | 1.1                    | 5%                     |  |  |  |  |
|             |                 |                        |                        |                        |  |  |  |  |

READ & STACEY (2009): "GUIDELINES FOR OPEN PIT SLOPE DESIGN".



#### **Risk-based Slope Design Approach**



Risk Based Slope Design, Contreras, L.F. (SRK, 2013)





#### Concept of Probability of Failure of the Slope

Risk Based Slope Design, Contreras, L.F. (SRK, 2013)



#### Conceptual Basis for estimation of the economic impact of slope failure





#### Slope Failure Impacts:

- Disruption of planned ore feed to plant.

- Additional costs to restore site.

Failure Impact = NPV<sub>reference</sub> - NPV<sub>with failure</sub>

The Economic Risk Map as a Tool for Pit Slope Optimization, Contreras, L.F. (SRK, 2015)



## Final Comments



Example of Construction of the economic risk envelope for year 2019. a) Probability distribution graphs. b) risk map result.

An Economic Risk evaluation approach for pit slope optimization, Contreras, L.F. (2015)



#### **Risk Acceptability Matrix for Economic Impact**

|     | Level | Range M\$ |      | Ri       | sk Catego | ory    |      |
|-----|-------|-----------|------|----------|-----------|--------|------|
|     | 5     | > 200     | н    | н        | н         | н      | н    |
| act | 4     | 100 - 200 | м    | м        | н         | н      | н    |
| dml | 3     | 50 - 100  | L    | м        | М         | м      | н    |
| 2   |       | 10 - 50   | L    | L        | L         | м      | м    |
|     | 1     | < 10      | L    | L        | L         | L      | L    |
|     |       | Range %   | <10% | 10-20%   | 20-50%    | 50-80% | >80% |
|     |       | Level     | 1    | 2        | 3         | 4      | 5    |
|     |       |           |      | Likeliho | bod       |        |      |

An Economic Risk evaluation approach for pit slope optimization, Contreras, L.F. (2015)



#### **Economic Risk Map Example**



