MEASUREMENT OF WATER IN UNDERGROUND MINES

Larry Cope Hydrogeologist SRK Consulting (US) Inc.

SME 2013 February 27, 2013

The Plan

First ask the question:

• What is mine water management and why do we care?

Then take a look at:

- The need for data
- Types of inflow to an underground mine
- Challenges to measuring inflow
- Methods application notes, pros and cons
- Trends in the industry

Mine Water Management

• Management in this context means:

Collecting and conveying inflow
 Controlling inflow and discharge from sumps
 Pumping to the surface

- Pumping can be a high overhead cost and varies by:
 Lift
 - Horsepower
 - \circ Staged interim storage
 - o Pipe run lengths
- Discharge requirements often driven by permits

Need for Comprehensive Data Collection

Measurement of flow and pressure is needed for:

- Operational efficiency and cost management
- Water balance
- Rock engineering
- Treatment and discharge requirements

Components of a Water Balance

February 27, 2013

SME 2013

🛹 srk consulting

Information Content

Flow in mine ditch. Note influence from precipitation at surface.

Blue line is ditch flow.

Information Content

February 27, 2013

SME 2013

Data Analysis

Drill hole flow & recovery test data

February 27, 2013

Data Analysis

February 27, 2013

SME 2013

Sheet flow on rib

February 27, 2013

Diffuse Inflow – Slow dripping or seeping

Flowing drill holes

February 27, 2013

Karst and large voids

Seepage through seals or bulkheads

Pipe flow discharges underground

Precipitate and debris in ditch

February 27, 2013

Full, flat gradient ditch

February 27, 2013

SME 2013

Sediment in shutin apparatus

February 27, 2013

Destruction from flood

Ad Hoc bag dam to collect diffuse flow.

Accumulation measured with sharp-crested weir.

Weir in ditch to collect "casual" flows. In this case, drainage through railroad ballast.

Parshall flume in ditch

Application Note: Stepped base, narrow throat

Palmer-Bowlus flume in ditch

Application Note: Round base, large range, wide throat

February 27, 2013

SME 2013

H-Flume at surface to measure seepage into a block cave subsidence zone

Application Note: Requires free outfall, large range

SME 2013

Ultrasonic Dual Transit Time Flow Meter

Application Note: Non-invasive, any pipe material, any size

Sump Level Measurement

Pressure datalogger

Sonic meter

Rock hydrostatic pressure measurement

Application Note: Flow/shut-in tests provides estimate of K,

Cost effective compared to packer testing from surface

	Applications	Cost
Ditch Flow		
Weir	Still water (Pool) Requires freeboard No debris, no precipitation	Low (\$1,500 - \$3,000)
Flume	Moving flow Minimal raise in head Self cleaning (handles debris) Some types handle submerged flow	Higher cost (\$2,000 - \$5,000)
Pipe Flow		
Ultrasonic	Non-invasive to pipe Doppler vs. Dual transit time	High cost (\$2,500 - \$4,000)
Magnetic	Invasive No moving parts	Most costly (\$3,500 - \$5,000)
Propeller	No debris, no precipitation	Lowest cost (\$500 – \$1,500)
	Invasive to different degrees	
Sump Level		
Float Wheel	Still water, minimal air movement Low cost (\$750 - \$2,000)	Low cost (\$750 – \$2,000)
Pressure Transducer	Direct readings of depth of water Low cost (\$500 - \$1,500)	Low cost (\$500 - \$1,500)
Ultrasonic	Does not contact water	High cost (\$2,000 - \$4,000)
ary 27, 2013	SME 2013	🛹 srk consulting

	Advantages	Disadvantages
Ditch Flow		
Weir	Simple	Vulnerable measurement point
	Many installation options	Not self cleaning
		Requires still pool - raises head
Flume	Self cleaning	More involved installation
	No large raise in head - good for ditches	More expensive than weirs
	New designs allow submerged conditions	
	Tend to be more accurate than weirs	
	Good option for unattended operation	
Pipe Flow		
Ultrasonic	Non-invasive to pipe	Cost
	No moving parts, accuracy not degraded with time	Complex meter programming
Magnetic Induction	No moving parts	Invasive installation (flanged insert)
	Long track record of use	
Propeller/paddle wheel	Low cost	Moving parts, accuracy degrades with time
	Long track record of use	Affected by debris, encrustation, cavitation
	Invasive to pipe, but often simpler than magnetic	
Sump Level		
Float Wheel	Dependable, long track record of use	Moving parts
	Low cost	Not set up for electronic datalogging
Pressure Transducer	Direct readings of depth of water	Can be affected by water chemistry
	Low cost	
Ultrasonic	Does not contact water	Cost
		Can be affected by changes in air density

→ srk consulting

Trends in Mine Water Management

Mine water management will increase in importance if (when) commodity prices fall.

- Pumping, storing, and conveying water is often a high overhead cost.
- Environmental controls are becoming a more important driver at mine sites outside of the US.

Technology is an important driver

- Automated data collection continues to improve and drop in price.
- More mines are adopting SCADA controls and many operators expect a seamless integration into a comprehensive mine monitoring system.
- Pipe flows and sump levels are measured in most mines. Many still not automated, but most are moving that way.

→ srk consulting

The Take Away

- All inflow and conveyance conditions can be measured. Some collection may be needed.
- A water balance model is only as good as its data.
- Measurement devices should be carefully selected for the conditions to take advantage of the strengths of each.
- Minimize maintenance, maximize data content.

Thank You

Questions.....?

