Hydrogeochemical Tracers in Groundwater

Marcie Schabert, Tom Kotzer

SRK Consulting

SMA Environmental Forum

October, 2018

What is a Tracer?

- Used for
 - Pathways: track water movement through a system
 - Identify: distinguish between waters
 - Fate: determine hydraulic and Bio/Geochemical processes

- Tracers may be
 - Natural: pre-existing in system
 - Artificial: added to the system in order to investigate it
 - Anthropogenic: a byproduct of a process, or accidental addition

Why Use Tracers?

Physical Aspects

=

- Direction of flow
- Flow velocity/Residence time
- Extent of mixing of different water
- Properties of flow matrix
 - Hydraulic conductivity
 - Hydrodynamic dispersion
 - Porosity

Bio/Geochemical Aspects

- Reactions (bio/geochemical)
- Sorption and cation exchange processes
- Mineral precipitation/dissolution

Why Use Tracers?

- Site water
 Management
 - Direction of flow

=

- Flow velocity/Residence time
- Extent of mixing Understand dilution
- Properties of flow matrix
 - Hydraulic conductivity
 - Hydrodynamic dispersion
 - Porosity

Inputs to flow models, water management Bio/Geochemical Aspects

- Reactions and in situ reaction rates
- Sorption and cation exchange processes
- Mineral precipitation/dissolution

Potential for in situ bioremediation (& quantification)

Attenuation of chemicals

Additions and loses of chemicals

Non-toxic

- Environmental
- Health & Safety

Transport Behavior

- Moves with water
- Is chemically stable
- Is not sorbed, exchanged, or filtered along flow path

Cost Considerations

- Tracer itself
- Tracer application, sampling, and analysis

Analytical Considerations

- Does not quickly transform
- Can be reliably detected at low concentrations
- Is not already present at high concentrations

What kind of tracers are there? Salt Tracers

- Dissolve in water and separate into anion and cation components
 - Anions better tracers
 - Cations effected by sorption (transport is retarded)
- Low costs, reliable, and widely available analysis
 - Anions = IC, field ISE probe
 - Cations = ICP-MS

 $\begin{array}{c} \textit{more soluble} \longrightarrow \\ \text{Ba}^{2+} > \text{Sr}^{2+} > \text{Ca}^{2+} > \text{Mg}^{2+} \\ \text{Cs}^+ > \text{Rb}^+ > \text{K}^+ > \text{Na}^+ > \text{Li}^+ \\ \longleftarrow \textit{more sorption} \end{array}$

Salt Tracers

- Chloride (NaCl)
 - Inexpensive, readily available in bulk
 - Background CI concentrations can be significant in some settings
 - Reduces resolution as tracer, or increases amount of tracer needed
 - Relatively high discharge limits for CI
 - CCME long term guideline of 120 mg/L for Cl

- Bromide (KBr, NaBr)
 - Readily available in bulk
 - Background Br is generally low
 - Don't need much to alter water's Br signature
 - High resolution

Salt Tracers

- Lithium (LiOH, LiCI)
- Fluoride (NaF)
- Iodide (KI)
- Suffer from one or more of the following:
 - High Cost
 - Low Discharge Limits
 - Retardation (non conservative flow)
 - Potentially damaging to biota
- Benefits:
 - Generally very low background levels
 - Low detection limits

- Reactive (non-conservative tracers) can also be used:
 - NaNO₃
 - $-Na_2SO_4$
- Used to determine in-situ reaction rates of nitrate, sulphate

Example: Determine Bio/Geochemical Reaction Rates

- Push-pull tests
 - Water labelled with conservative (Br) and reactive tracers (NO₃) is injected into a well
 - After a certain 'reaction period' the water is extracted
 - Conservative tracer provides dilution factor
 - Reactive tracer (and product) provide in-situ reaction rates

Example: Determine Biogeochemical Reaction Rates

Istok et al., 1997 example

What kind of tracers are there? In-Situ Physio-Chemical Tracers

- Use **existing differences** between waters to track movement and/or mixing
- Differences in:

Ę

- Concentration of a particular solute
- Conductivity
- Temperature

What kind of tracers are there? Dye Tracers

- Fluorescein
- Rhodamine
- Rhodamine WT

- Visual tracer
- **Portable detection** methods available (Fluorometer)
 - Very reliable
 - Low detection levels
- Non-conservative: All tracer dyes suffer retardation to some extent, depending on the setting
 - Can be an advantage if goal is to trace adsorbing organics
 - Rhodamine WT least effected by sorption

What kind of tracers are there? Isotope Tracers

- Isotope = same number of protons, but different number of neutrons
- Different masses of isotopes mean they participate in reactions and physical processes differently
 - Fractionation
- Reported as 'permil' (‰), relative to a standard

Isotope	Ratio	% natural	Reference (abundance ratio)	Commonly measured phases
² H	² H/ ¹ H	0.015	VSMOW (1.5575 · 10 ⁻⁴)	H2O, CH2O, CH4, H2, OH minerals
³ He	³ He/ ⁴ He	0.000138	Atmospheric He (1.3 · 10 ⁻⁶)	He in water or gas, crustal fluids. basalt
⁶ Li	6Li/7Li	7.5	L-SVEC (8.32 · 10 ⁻²)	Saline waters, rocks
11B	¹¹ B/ ¹⁰ B	80.1	NBS 951 (4.04362)	Saline waters, clays, borate, rocks
13C	13C/12C	1.11	VPDB (1.1237 · 10 ⁻²)	CO2, carbonate, DIC, CH4, organics
¹⁵ N	¹⁵ N/ ¹⁴ N	0.366	AIR N ₂ (3.677·10 ⁻³)	N2, NH4 ⁺ , NO3 ⁻ , N-organics
¹⁸ O	¹⁸ O/ ¹⁶ O	0.204	VSMOW (2.0052 · 10 ⁻³) VPDB (2.0672 · 10 ⁻³)	H ₂ O, CH ₂ O, CO ₂ , sulphates, NO ₃ , carbonates, silicates, OH ⁻ minerals
34S	34S/32S	4.21	CDT (4.5005 · 10 ⁻²)	Sulphates, sulphides, H2S, S-organics
37CI	37Cl/35Cl	24.23	SMOC (0.324)	Saline waters, rocks, evaporites, solvents
⁸¹ Br	⁸¹ Br/ ⁷⁹ Br	49.31	SMOB	Developmental for saline waters
⁸⁷ Sr	⁸⁷ Sr/ ⁸⁶ Sr	${}^{87}Sr = 7.0$ ${}^{86}Sr = 9.86$	Absolute ratio measured	Water, carbonates, sulphates, feldspar

$$\delta^{18}O_{\text{sample}} = \left(\frac{({}^{18}O/{}^{16}O)_{\text{sample}}}{({}^{18}O/{}^{16}O)_{\text{reference}}} - 1\right) \cdot 1000 \text{ \% VSMOW}$$

δD and δ¹⁸O of water

=

- Conservative: Is part of the water molecule
- Inexpensive & Easy: widely available analysis, few storage and collection considerations
- IAEA monitoring network (worldwide precipitation monitoring dataset)
- Used to understand
 - contributions to system from precipitation
 - timing of recharge
 - Transformation processes (evaporation, condensation, sublimation)
- Deuterium oxide (D₂O) artificial tracer to modify isotopic composition of water

- Tritium (³H)
 - Conservative: Is part of the water molecule
 - Radioactive: half-life (12.34 yrs) useful for aging groundwaters
 - Anthropogenic input: thermonuclear testing bomb pulse (1950s – 1980s)
 - IAEA monitoring network (worldwide precipitation monitoring dataset)

For continental regions:

<0.8 TU	Submodern — recharged prior to 1952
0.8 to ~4 TU	Mixture between submodern and recent recharge
5 to 15 TU	Modern (<5 to 10 yr)
15 to 30 TU	Some "bomb" ³ H present
>30 TU	Considerable component of recharge from 1960s or 1970s
>50 TU	Dominantly the 1960s recharge

For coastal and low latitude regions:

<0.8 TU	Submodern — recharged prior to 1952
0.8 to ~2 TU	Mixture between submodern and recent recharge
2 to 8	Modern (<5 to 10 yr)
10 to 20	Residual "bomb" ³ H present
>20 TU	Considerable component of recharge from 1960s or 1970s

Age Dating of Waters: Modern Groundwater

• Tritium (³H)

- Pre-bomb water (recharged before 1950) is tritium free
- 1951 to 1976 large inputs from Thermonuclear bomb testing
- Modern precipitation ~10 TU
- If bomb peak can be identified, can calculate vertical water velocity
- Decay product (He³) can also be used to aid in dating of young waters

- δ¹⁵N and δ¹⁸O of Nitrate
 - Anthropogenic (explosives)
 - Distinct isotopic signature
 - Mining: generally no other significant sources of nitrate
 - Amount of enrichment related to of denitrification
 - Determine initial nitrate concentrations

$$\delta^{15} \mathrm{N} = \delta^{15} \mathrm{N}_{\text{initial}} + {}^{15} \varepsilon (\ln([\mathrm{NO}_3^-]))$$

- δ³⁴S and δ¹⁸O of Sulphate
 - δ³⁴S alone can be used to distinguish between different sulphur sources (e.g. volcanicsulphur)
 - Through time
 - Sources
 - δ¹⁸O and δ³⁴S together can be diagnostic of sources and age of dissolved sulphate

Take Home Message: Know your Goal

- Think about the question you are trying to answer, then look for an appropriate tracer
- Different options for tracers
- Different reasons for using tracers
 - Need to pick tracer appropriate for settings and purpose
- Just because you can measure it, doesn't necessarily mean you should

References

- Carpenter, P. J., Ding, A. & Cheng, L. (2012) Identifyi ng Groundwater Contamination Using Resistivity Surveys at a Landfill near Maoming, China. *Nature Education Knowledge* 3(7):20
- Clark, I., 2015. *Groundwater geochemistry and isotopes*. CRC press.
- Clark, I.D. and Fritz, P., 1997. *Environmental* isotopes in hydrology. CRC press.
- Granger, J., Sigman, D.M., Lehmann, M.F. and Tortell, P.D., 2008. Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. *Limnology and Oceanography*, *53*(6), pp.2533-2545.
- Istok, J.D., Humphrey, M.D., Schroth, M.H., Hyman, M.R. and O'Reilly, K.T., 1997. Single-well, "push-pull" test for in situ determination of microbial activities. *Groundwater*, *35*(4), pp.619-631.

- Solvent Properties of Water <u>https://www.khanacademy.org/science/biology/water-acids-and-bases/hydrogen-bonding-in-water/a/water-as-a-solvent</u> Date Accessed: 10/15/2018
- USGS, Use of Dyre Tracing to Determine Ground-Water Movement to Mammoth Crystal Springs, Sylvan Pass Area, Yellowstone Nation Park, Wyoming. Scientific Investigations Report 2006-5126. Lawrence E. Spangler and David D. Susong