

Lithium Brine Projects: there is a resource, but is there a reserve?

V Seminario Internacional

República Argentina

Pablo Cortegoso - SRK Consulting US BS Civil Eng., M.Eng. - pcortegoso@srk.com

Jujuy, Argentina - April 7, 2016

srk consulting

Lithium Brine Projects - Stages

Geologic Model Recoverable volume In-situ grade Classification Preliminary Dynamic model Produced brine composition Economics

o Pilot test for L brine extraction Detailed Dynamic Model Conversion of resource to

reserve

→ srk consulting

Brine Resource Estimation

What is the challenge?

- <u>Dynamic</u> Resource Brine moves...
- Resource Volume Aquifer volume and specific yield
- Permeability governs rate of extraction
- Once the pump is on; the system is ON!
- Weather plays major role
- Sampling storage
- Spent brine disposal

CIM Definition of Mineral Reserve (May 20, 2014)

A Mineral Reserve is the economically mineable part of a Measured and/or Indicated Mineral Resource. It includes diluting materials and allowances for Iosses, which may occur when the material is mined or extracted and is defined by studies at Pre-Feasibility or Feasibility level as appropriate that include application of Modifying Factors. Such studies demonstrate that, at the time of reporting, extraction could reasonably be justified.

Resources and Reserves

Extractability

- Brine aquifer characteristics
 - Characteristic porosity
 - Specific yield
 - Transmissivity
 - Heterogeneity of stratigraphy
 - Grade distribution

Extractable reserve

Reserve base subject to an in-situ recovery factor

srk consulting

Extractable Reserve

- In-situ recover factor derived from QP judgement and calibrated dynamic model
- Immature vs. mature salars
- High P_t and low S_y
 hydrostratigraphic layer(s) may
 not be appropriate to include as
 potentially extractable resource

Numerical Groundwater Model for Brine Projects

Numerical model is used for brine projects as "dynamic" resource model to support mineral reserve estimates.

Model predicts:

- Extracted brine volume over time
- Brine chemistry in time

Numerical GW Model Applications

Production schedule definition

- Defines extracted brine volume and grade to meet production expectations
- Defines number of production wells, individual pumping rates, and well locations during exploitation
- Defines CapEx and OpEx during life of mine

Production schedule should

- Account for process losses associated with LCE and/or KCI production
- Incorporate concurrent fresh water extraction from the salar
- Include process residuals (e.g., spent brine) that remain or are re-introduced to the salar

Cut-Off Grade

The lowest grade of mineralized material considered economic; used in the calculation of the ore reserves in a given deposit.

- Variables:
 - In-Situ Losses
 - Ex-Situ Losses
 - Product Pricing
 - OPEX

Cut-Off Grade - Example

Target Sales Price	\$	8,000	\$/t LCE		
Process Cost	\$	2 200	\$/†1CF		
Fixed tail	Ψ	100	ma/l		
	40,000 I LCE / yr				
LCE - Li conv		5.28			
Prod Volume		7,575,758	kg Li/yr		
			-		
Average Li Conc	500 mg Li/L Brine				
Average Li Conc	0.0005 kg Li /L Brine				
Brine to achieve target	15,	151,515,152	L brine per year		
		43,290,043	L brine p	er day (350 day)	
Max Plant Throughput	43,290 cubic meters raw brine per day				
Annual Prod Cost	\$	88,000,000			
Prod cost/L brine		0.005808			
Breakeven Grade Li		238	ma/l		
Recovery		58%			
Produced LCF		11 000	t/vr		
	¢	11,000	t/ уі ¢ /+ L ОГ		
Opex	\$	8,000	\$/TLCE		

Conclusions

Your mineral reserve estimate should...

 Account for in-situ recovery factors for raw brine extraction from the Salar

Include ex-situ recovery factors which must be offset by additional raw brine extraction

 Be limited to measured and indicated mineral resource classifications Address spent brine handling and/or process water supply which may impact predicted mine life

Remain economic