Dry Stack Tailings in Cold Regions: Opportunities and Constraints

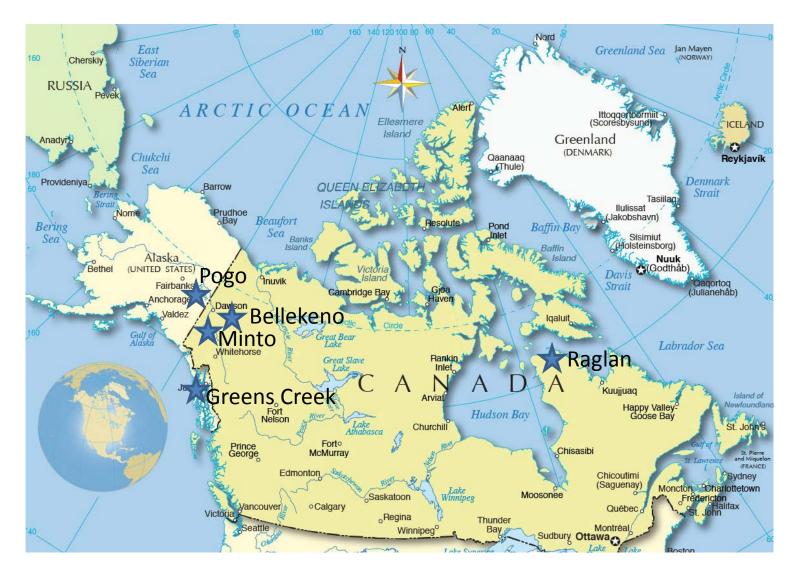
Dan Neuffer, PE Cam Scott, PEng

Alaska Miners Association Convention November 5, 2015

Objective

- What opportunities do dry stack tailings provide?
- What constraints must be considered when evaluating dry stack tailings?
- What are specific opportunities and constraints for dry stack tailings in cold regions?

Overview


- 1. Tailings continuum
- 2. Examples of cold regions dry stacks
- 3. Dry stack opportunities
- 4. Dry stack constraints
- 5. Opportunities specific to cold regions
- 6. Constraints specific to cold regions
- 7. Conclusions

Tailings Continuum

Tailings classification	Solids content	Transportation	
Whole slurry	30-40%	Centrifugal pump	
Thickened	45-65%	Centrifugal pump	
Paste	65-70%	Positive displacement pump	
Filtered (aka dry stack)	80-85%	Truck or conveyor	

Filtered Tailings in Cold Regions

Greens Creek Mine, Alaska

Operator: Hecla Greens **Creek Mining** Company **Operating:** 1989 - present Mill throughput: 2,200 tons/day **Total capacity:** 13 million tons

Image from Independent Expert Engineering Investigation and Review Panel, 2015

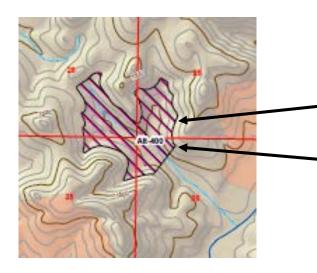
Pogo Mine, Alaska

Operator:

Sumitomo Metal Mining Pogo LLC **Operating:** 2006 - present Mill throughput: 2,600 tons/day **Total capacity:** 20 million tons

Mount Polley Tailings Breach

Review Panel Recommendations:


- Eliminate surface water from tailings impoundments
- Promote unsaturated conditions within tailings
- Achieve dilatant conditions within the tailings deposit

 Filtered tailings provides opportunity for increased physical stability

Reduced tailings footprints:

- More efficient storage
- Less disturbance
 - Reduced facility area within watershed
 - Favorable for avoiding significant water courses
 - Less permitting and lower reclamation costs

- Whole slurry tailings capacity: 60 million tons
- Filtered tailings capacity: > 80 million tons

Flexibility in stack shape

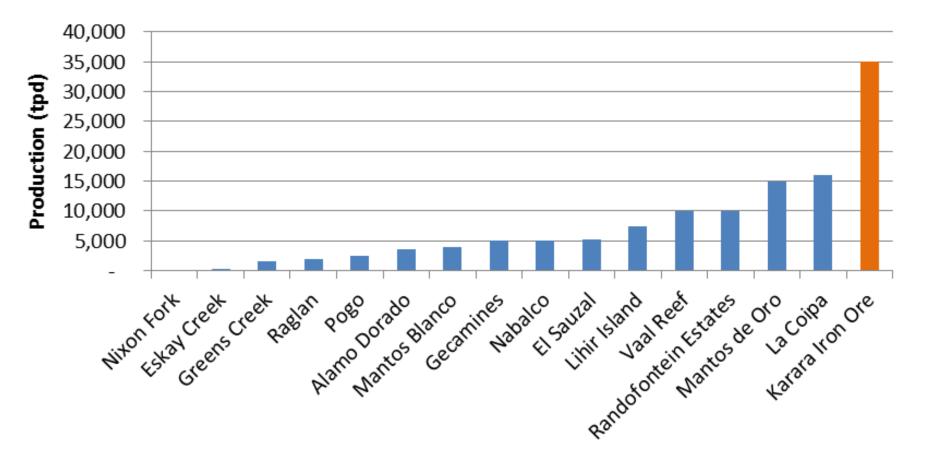
- Greater range of suitable terrain for deposition
- Opportunity to design for stable post-closure landform

Images from Sumitomo Metal Mining Pogo 2012, Hecla Greens Creek 2015

Reduced capital costs

- Full height dam not needed
- Dam raises not needed

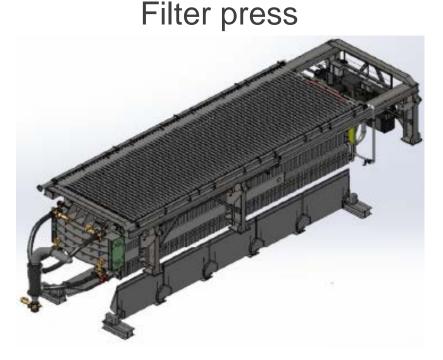
However...filter plant needed


- Reduced seepage through tailings
 - Less water contacting tailings
 - Lower seepage management costs

Reduced post-closure care requirements

- Reduced water management requirements
- Reduced maintenance and inspections

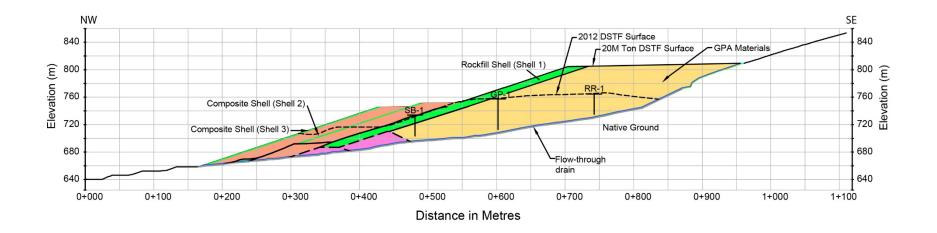
Current throughputs:


Operational constraints:

- Difficulty dewatering finer grinds
- Trafficability, particularly in wet climates
- Need for equipment at the stack for timely spreading and compacting

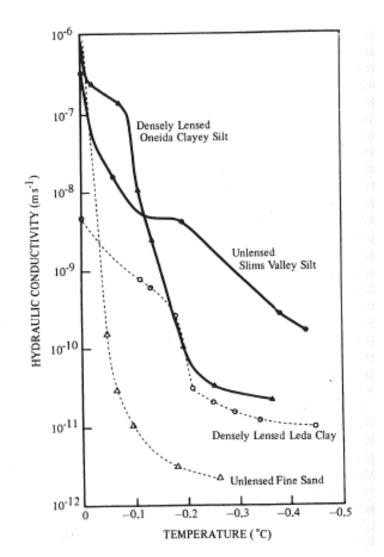
Higher operating costs

- Power requirements
- Maintenance staff
- Spreading/compacting equipment (low utilization)


- Increased potential for oxidation of and acid generation from sulfidic tailings
 - Unsaturated conditions allow air entry

$2FeS_2 + 7O_2 + 2H_2O = 2Fe^{2+} + 4SO_4^{2-} + 4H^+$

Cold Regions Opportunities


- Increased tolerance for differential thaw settlement
 - If foundation has ice-rich permafrost and degrades
 - Stack generally less sensitive to settlement than dam retaining slurry tailings and water

Cold Regions Opportunities

- Increased physical and chemical stability if permafrost is present in stack
 - Increased shear strength (assuming minimal excess ice)
 - Decreased permeability to air and water
 - Decreased oxidation rates

🛷 srk consulting

Cold Regions Opportunities

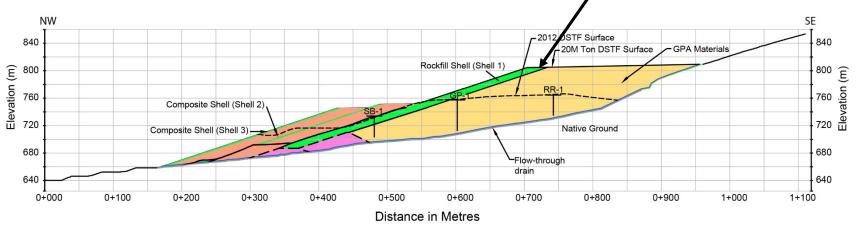
- Reduced difficulty with winter water management
 - No tailings pipelines to operate and maintain
 - May have lower operation and maintenance requirements for water pipelines
 - However...requires other water storage facilities

- Tailings placement in freezing conditions
 - Freezing of tailings prior to spreading and compaction resulting in lower tailings densities
 - Example workaround: site-specific testing to establish maximum time between dumping and spreading + compacting
 Duration of Compaction Nuclear Densometer % to Maximum Dry

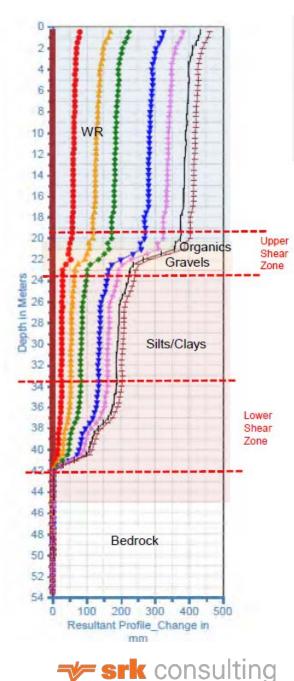
	Compaction	Nuclear Densometer		% to Maximum Dry
	Effort Trial	I Density (pcf)	Moisture (%)	Density
1 Day	4 Passes	102.0	16.2	93.3
	6 Passes	105.4	15.4	96.4
	8 Passes	105.1	16.7	96.2
2 Days	4 Passes	102.3	16.8	93.6
	6 Passes	103.7	16.1	94.9
	8 Passes	106.4	16.7	97.3
3 Days	4 Passes	98.4	16.8	90.0
	6 Passes	100.6	16.9	92.0
	8 Passes	102.7	17.1	94.0
	4 Passes	90.0	15.5	83.4
	6 Passes	87.8	15.3	81.4
	8 Passes	86.4	15.6	80.1

Data from Sumitomo Metal Mining Pogo 2012

Tailings placement in wet conditions


- Placement of wet tailings can result in
 - Lower tailings densities
 - Increased potential for saturated zones
- Examples of how to address:
 - Compact and grade surface to promote drainage
 - Place tailings in multiple, small cells to allow pore pressure dissipation

Surface water management


- Run-on diversions
 - Construction in permafrost alteration of thermal regime
 - Ice and snow accumulation in channel
- Erosion protection for stack slopes
 - Tailings are erodible
 - Spring break-up
 - Summer/fall rain events

Example of armored slope for erosion protection

- Foundation stability in ice-rich soils
 - Differential settlement of underdrains can lead to development of saturated zones in overlying tailings
 - Downslope movement of stack due to
 - Excess pore pressure in degrading, icerich permafrost and/or
 - Creep in ice phase of laterally continuous, ice-rich permafrost

Snow management

• Remove snow prior to tailings placement to avoid entraining ice or water in tailings

- Dust management
 - Fugitive dust can be significant during dry periods
 - Mitigation strategies:
 - Compaction
 - Watering
 - Minimizing traffic
 - Armoring
 - Windbreaks
 - Concurrent reclamation

Recap

- 1. Tailings continuum
- 2. Examples of cold regions filtered tailings
- 3. Filtered tailings opportunities
- 4. Filtered tailings constraints
- 5. Opportunities specific to cold regions
- 6. Constraints specific to cold regions

Conclusions

- Mineral development in cold regions will continue to expand
- Operator objectives:
 - Increase physical stability of tailings
 - Decrease risks of tailings storage
- Filtered tailings is one way to achieve these objectives
 - Opportunities and constraints specific to a site and project must be considered

Thank you! Questions?