Mine Water Liability: Evaluating the Risks and Potential Costs

Stephen Day, Geochemist Tom Sharp, Environmental Engineer

PDAC 2017: March 5 - 8

Outline

- 01 A (Very) Brief History of Water Quality Concerns at Mine Sites
- 02 Predicting Water Quality
- 03 Management Technologies
- 04 Implications of Uncertainty
- 05 Concluding Remarks

A (Very) Brief History of Water Quality Concerns at Mine Sites

First Came Acidity and Metals.....

- 16th Century De Re Metallica
- Late 20th Century Metals (copper, zinc etc), metalloids (arsenic), cyanide, radioactivity.
- 21st Century More metals (e.g, cobalt), non-metals (selenium, sulphate), blasting residues (nitrate), greater stringency (mercury).
- What's coming?
 - More regulated elements (rare earths).
 - Improved understanding of toxicology.

Discharge Objectives vs Receiving Water Quality

Discharges

- Considerations for "acute toxicity" (short term exposure limits)
 - In Canada, "deleterious" according to the Fisheries Act
 - Higher allowable concentrations (e.g. copper 0.3 to 0.6 mg/L)
 - <u>http://laws-lois.justice.gc.ca/eng/regulations/SOR-2002-222/page-10.html#h-51</u>

Receiving Water Quality

- Chronic toxicity
- Lower allowable concentrations (e.g. copper 0.002 to 0.04 mg/L)
- <u>http://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/</u>

Convergence of discharge standards and receiving water quality guidelines is a concern

Predicting Water Quality

Water Quality Predictions

Underpin decisions on water quality management technologies.

Important elements

- Supported by data collection at <u>all</u> stages of project development (including early exploration and metallurgical testing).
- Appropriate at all stages of economic evaluation (including scoping and PEAs).
- Less complex in early stages (e.g. screening level for scoping studies).
- Relies on strong conceptualization of mine facilities (sources) and pathways (surface water and groundwater).
- Reality checks against analogous operations.

Two General Groups

- 1. Waste weathering and leaching processes
- Physical breakdown (suspended solids)
- Metal leaching (ML).
 - Leaching of soluble minerals
 - Leaching of soluble weathering products
- More specifically, acid rock (mine) drainage (ARD).
 - Oxidation of sulphide minerals, acid generation, acid neutralization.

Two General Groups

- 2. Residual reagent leaching
- Explosives residues
- Heap leaching solutions (cyanide, acid)
- Process residues (cyanide, flotation reagents, acid, hydromet)

Prediction Issues

Causes of Uncertainty

- Incomplete conceptualization of site.
- Predictions of waste weathering rates are commonly based on interpretation of laboratory or pilot scale field tests (scaling issues).
- Understanding of underlying controls remains weak.
- Background water quality and flow poorly characterized
- Need for and use of predictions is not welldefined
 - Different methods serve different purposes.
 - Outputs incorrectly viewed as absolute.
 - Excessive conservatism for regulatory purposes.

Prediction Issues

Narrowing Uncertainty

- Thorough initial conceptualization.
- Ground-truthing to full-scale analogs.
- Recognition that different models and methods serve different purposes.
- Appropriate modelling detail for each stage of project evaluation (economic and permitting).
 - Avoid excessive complexity.
 - Pick the right tool for the job.

Management Technologies

Selection of Management Technologies

Technical requirements

Target water quality objectives (generic or site specific

Maturity of technology

Performance certainty

Regulatory acceptance

Operational vs future costs (bonding)

Types of Technologies

Prevent

- Underwater disposal (ML/ARD)
- Alkali blending (ML/ARD)
- Cooling (ML/ARD)
- Reagent selection (processing)
- Explosives management (blasting)

Control

- Natural covers (soils)
- Artificial covers (membranes)
- Liners
- Water diversions

Treat

- Passive treatment Semi-passive treatment.
- Active treatment

Alkali Blending

Active Treatment

- Strong technical solution for ARD and conventional metals.
 - Can meet discharge standards.
- Mature technologies for some parameters.
- Can have very low long term costs (in NPV terms).

- High costs for some parameters (e.g sulphate).
- Finicky for some parameters using biological processes.
 - Requires containment of non-dischargeable waters (surface water and groundwater).
 - Disposal of residues (studges and prines) Requires perpetual presence (infrastructure).

Passive treatment Semi-passive treatment. Active treatment

Implications of Uncertainty

Concluding Remarks

Concluding Remarks

- Cost and schedule implications of water quality management are very commonly missed (or covered too cursorily) in the early stages of economic assessments.
- Scoping level water quality assessments supported by early data collection during exploration can provide strong early feedback to project designs.
- Technology selections need to consider other consequences to costs and permitting risks.

Thank You

Mine Water Liability: Evaluating the Risks and Potential Costs

Presented by:

Stephen Day, PGeo Corporate Consultant Tom Sharp, Peng Principal Consultant

SRK Vancouver Oceanic Plaza, 22nd Floor, 1066 West Hastings Street, Vancouver, BC, Canada V6E 3X2 Tel: +1 604 681 4196

© SRK Consulting (Canada) Inc., 2016 All rights reserved.

