Tailings Dams: When We Start Worrying

Clara Balasko, MSc, PE

Dave Bentel

Operational Monitoring

- Why operational monitoring is important
 - Indication that this is an issue before incident occurs
- What to monitor
 - Embankments and berms
 - Decant structures
 - Tailings deposition systems
 - Piezometers
 - Downstream sediment control
- What can happen when operational monitoring is not perform or if the results are ignored

Key to Safety: Operational Monitoring

- More than 2 Major Failures per year with fatalities
- Typically more than one negative condition contributes to failures
- Water is the key element in the majority of failures
- Free Water amplifies extent of damage
- Tailings dams safety relies on proper operation of the facility

Operational Monitoring

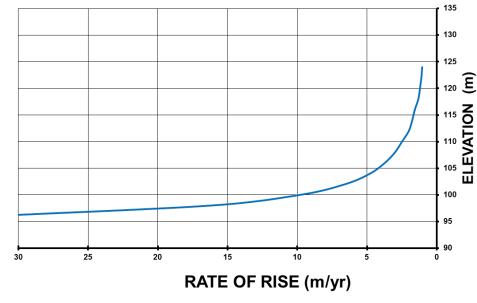
- Why operational monitoring is important
 - Indication that this is an issue before incident occurs
- What to monitor
 - Embankments and berms
 - Decant structures
 - Tailings deposition systems
 - Piezometers
 - Downstream sediment control
- What can happen when operational monitoring is not perform or if the results are ignored

In order to:

- Prevent unnecessary formation of cracks and holes
- Provide indication of degree of consolidation of outer walls
- Prevent outer wall overtopping
- Ensure compliance with legal freeboard requirements
- Prevent outer wall erosion from leaks in piping

- Monitoring Activities
 - Embankment drainage

- Monitoring Activities
 - Embankment drainage
 - Moisture conditions


- Monitoring Activities
 - Embankment drainage
 - Moisture conditions
 - Slope geometry

- Monitoring Activities
 - Embankment drainage
 - Moisture conditions
 - Slope geometry
 - Vertical freeboard
 - Quality of embankment
 - Rate of rise
 - Tailings deposition program

Piezometers

- In order to
 - Provide early warning of significant increases in phreatic surface elevation and potential stability problems
 - Evaluate remedial measure to improve stability
- Monitoring Activities
 - Evaluation of variation in piezometer elevation
 - Sufficient operable monitoring locations

In order to:

- Ensure safe operating procedures
- Eliminate unnecessary storage of water on dam surface
- Determine pool control effectiveness
- Ensure decant operating per design
- Determine required to decant stormwater

- Monitoring Activities
 - Pool control
 - Decant discharge

Condición de Agua Baja

- Actividades de Monitoreo
 - Pool control
 - Decant discharge
 - Sinkhole development

- Monitoring Activities
 - Pool control
 - Decant discharge
 - Sinkhole development
 - Access safety
 - Quality of decant structure

Tailings Delivery System

- In order to
 - Eliminate unequal distribution of tailings
 - Determine future deposition point requirements
 - Determine deposition extension requirements
 - Determine maintenance requirements
 - Prevent of unnecessary spillage from burst pipes and valves

Tailings Delivery System

- Monitoring Activities
 - Operation and control of deposition points
 - Beaching characteristics from deposition point
 - Condition of deposition piping
 - Effectiveness of deposition system with respect to embankments and pool control

Downstream Sediment Control

- In order to
 - Warn of required wall raising or sediment removal
 - Prevent unnecessary buildup of moisture at dam toe
 - Detect of potential stability problems

Downstream Sediment Control

- Monitoring Activities
 - Available capacity
 - Efficient drainage
 - Degree of saturation

Control Operativo

- Why operational monitoring is important
 - Indication that this is an issue before incident occurs
- What to monitor
 - Embankments and berms
 - Decant structures
 - Tailings deposition systems
 - Piezometers
 - Downstream sediment control
- What can happen when operational monitoring is not perform or if the results are ignored

Free State Saaiplaas (1993)

- No overtopping
- Higher rate-ofrise than design lead to higher phreatic surface
- Insufficient piezometers to monitor

Merriespruit (1994)

 Poor pool control (i.e. supernatant water not at the decant) due to single point deposition

Fundão Dam (2015)

- Liquefaction of the sand embankment because of insufficient drainage
- Two year period of pool encroachment on the embankment
- High rate-of-rise

