Integrating Climate Change into Water Management Design

by: <u>Victor Munoz</u>, Tia Shapka-Fels, Maritz Rykaart SRK Vancouver, Canada

Date June 26th, 2017

Outline – What is this talk about?

- Introduction
- Conceptual Methodology
 - Sources
 - Baseline Models
 - Historical Info
 - Design Value
- Discussion

Introduction

- General consensus that:
 - Climate change is occurring
 - Engineering design should consider climate change
- No consensus on:
 - Which climate change prediction methods is best
 - How to consider climate change in water management design

 Combining Climate Change models with historical information to determine change values used in engineering design.

Conceptual Methodology - Sources

- Information is captured from:
 - First Assessment Report 1990 (FAR)
 - Second Assessment Report 1995 (SAR)
 - Third Assessment Report 2001 (TAR)
 - Fourth Assessment Report 2007 (AR4)
 - Fifth Assessment Report 2013 (AR5)
- No individual model or scenario is superior over another
- More recent Assessment Report models are not more reliable

Conceptual Methodology - Sources

- Information provided by Environment and Climate Change Canada
- Used as hub for worldwide information.

Variable	Base Variable	Details
Air Temperature	Temperature	Mean, mean maximum, mean minimum, and extreme range at 2 m above the ground surface
Heat Wave Duration Index	Temperature	Maximum period >5 consecutive days with T _{max} >5°C above baseline T _{max} normal
Frost Days	Temperature	Total number of days with absolute minimum temperature <0°C
Growing Season Length	Temperature	T_{mean} >5°C for more than 5 days and T_{mean} <5°C for more than 5 days
Air Temperature, Extreme Range	Temperature	Difference between the highest and lowest temperature in the same calendar year
Total Precipitation	Precipitation	Total rainfall and snowfall as water equivalent
Days with Rain >10 mm	Precipitation	Days with rain ≥10 mm/day
Simple Daily Intensity Index	Precipitation	Total annual precipitation / number of precipitation days ≥1 mm/day
Dry Days	Precipitation	Maximum number of consecutive days with precipitation <1 mm
Fraction of Total Annual Precipitation >95 th Percentile	Precipitation	Annual precipitation >95 th percentile
Wind Speed	Wind Speed	Mean, meridional, and zonal at 10 m above the ground surface
Solar Radiation	Radiation	Shortwave surface downwelling
Humidity	Humidity	Relative and specific humidity at 2 m above the ground surface
Sea Level Pressure	Air Pressure	Mean sea level pressure

Conceptual Methodology – Baseline Models

- Climate change projected with respect to set baseline condition spanning at least 30 years (1976-2005)
- Considers 3
 projection periods
 2011-2040 (2020s)
 - 2041-2070 (2060s)
 - 2071-2100 (2080s)

Conceptual Methodology – Baseline models

Climate parameter: Air Temperature – Mean (2m) Latitude: 61.054, Longitude: 28.184 Baseline: 1976 – 2005 / Projection: 2011 – 2040

Yearly Avg. between 1976 to 2005 (Baseline)

Change with respect to baseline [%]

Yearly Avg. between 2011 to 2040 (Projection)

Conceptual Methodology – Baseline models

- Same data presented as boxwhisker plot
- Box centerline represents median value
- Upper and lower borders represent the third and first quartiles
- Whiskers span maximum and minimum values

Conceptual Methodology – Historical Info

- Reanalysis typically extends from ~1980 to present (2017), and covers the entire globe from the Earth's surface to well above the stratosphere.
- Sources of reanalysis are:
 - ERA-Interim
 - MERRA/MERRA-2
 - JRA-55
 - NCEP/NCAR

Conceptual Methodology – Historical Info

- 3DVar vs 4DVar Assimilation
 - 4DVar assimilation is more representative of the measured values because forecast information is corrected within the respective time step.
 - One of the few state of the art with 4D-var assimilation is ERA-Interim (ECMWF), and then it was used in this review.

Comparison between measured data (red), 3DVar data assimilation (blue) and 4DVar data assimilation (green) (Kepert, 2009)

Conceptual Methodology – Historical Info

- ERA-Interim =>Trend analysis using five methodologies are implemented:
 - Ordinary Least Square
 - Quantile Regression
 - Mann-Kendall and Theil Sen
 - Zhang
 - Yue and Pilon
- Regression methods with more than 95% statistical significance are used (P-value < 0.05).

Conceptual Methodology – Design value

Climate change trends from (1) historical data, (2) forecasted historical trend, (3) climate change models. Black dot represents climate change design value used

Conceptual Methodology – Design value

• +0.68% [K] => +1.9 °C

Discussion

- This methodology combines historical information with climate change models to define one engineer design value.
- Solution can be useful to account for changes in water balances and civil structure design.

Questions?

Climate parameter: Air Temperature – Mean (2m) Latitude: 61.054, Longitude: 28.184 Baseline: 1976 – 2005 / Projection: 2011 – 2040

