## Break free from your tool Inertia

by: Victor Muñoz S.
SRK Vancouver, Canada
Date June 26<sup>th</sup>, 2017





### Outline – What is this talk about?

- From Spreadsheets to Satellite Information
- Hydrological sources
- The two-way challenge problem
- R language: A possible solution for hydrology
- My R Solution
- Conclusion



#### **Information Paradigm**

• In 1980

Satellite technology was introduced, but information was scarce and not yet public.

Hydrological analyses relied on simple spreadsheets such as Lotus 1-2-3 and early versions of Microsoft Excel.

• In 1990

With internet, the amount of information started to increase.

#### Today

Meteorological information can be used to complement site data; and, public meteorological sources exponentially increased.



#### **Meteorological Sources – Ground Base**

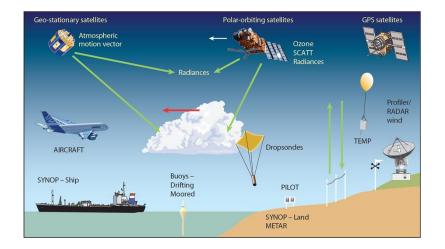
- National Climatic Data center from NOAA
- Global Surface Summary of the day (GSOD): 9,000 Stations
- Global Historical Climatology Network (GHCN): 75,000 stations
- Records span up to 150 years.





#### Meteorology Source – Satellite Base

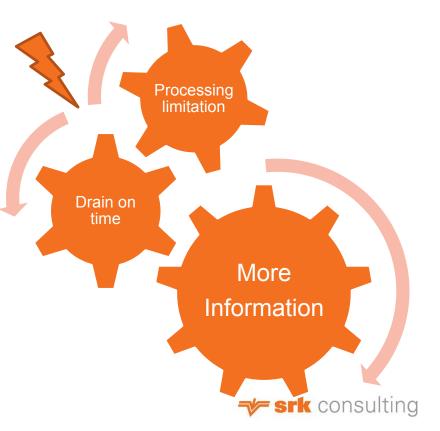
#### Satellite-based rainfall estimates


| Dataset          | Full name                                                                                     | Latitudinal<br>coverage | Spatial resolution | Temporal<br>coverage  | Temporal<br>resolutions        | References                                                |
|------------------|-----------------------------------------------------------------------------------------------|-------------------------|--------------------|-----------------------|--------------------------------|-----------------------------------------------------------|
| CMORPH           | NOAA Climate Prediction Center (CPC)<br>MORPHing technique                                    | 60° N–60° S             | 0.07°,<br>0.25°    | Dec 2002–<br>present  | 3-hourly,<br>daily             | Joyce et al. (2004); CPC-<br>NCEP-NWS-NOAA-USDC<br>(2011) |
| PERSIANN-CDR     | PERSIANN Climate Data<br>Record, Version 1 Revision 1                                         | 60° N–60° S             | 0.25°              | Jan 1983–<br>present  | daily                          | Sorooshian et al. (2014);<br>Ashouri et al. (2015)        |
| PERSIANN-CCS-Adj | Precipitation Estimation from Remotely<br>Sensed Information using Artificial Neural Networks | 50° N–50° S             | 0.04°              | Jan 2003–<br>present  | daily                          | Yang et al. (2016); Hong et al. (2004)                    |
| 3B42v7           | TRMM Multi-satellite Precipitation Analysis research<br>product 3B42 Version 7                | 50° N–50° S             | 0.25°              | Jan 1998–<br>present  | 3-hourly,<br>daily             | Huffman et al. (2007, 2010)                               |
| CHIRPSv2         | Climate Hazards group Infrared Precipitation<br>with Stations Version 2.0                     | 50° N–50° S             | 0.05°              | Jan 1981–<br>present  | daily,<br>pentadal,<br>monthly | Funk et al. (2015)                                        |
| MSWEPv1.1        | Multi-Source Weighted-Ensemble<br>Precipitation Version 1.1                                   | 90° N–90° S             | 0.25°              | Jan 1979–<br>Dec 2014 | daily                          | Beck et al. (2017)                                        |
| PGFv3            | Princeton University Global Meteorological<br>Forcing Version 3                               | 17° S–57° S             | 0.25°              | Jan 1979–<br>Dec 2010 | daily                          | Peng et al. (2016); Sheffield<br>et al. (2006)            |
|                  |                                                                                               |                         |                    |                       |                                |                                                           |

#### Source: Zambrano-Bigiarini et al (2017)

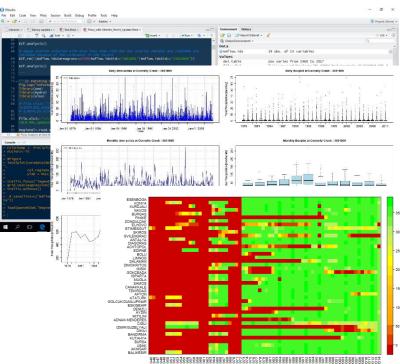


#### **Meteorology Source – Hybrid models**


- Reanalysis Tools: Data Assimilation combines land information with satellite information in one worldwide climatic model with daily/sub-daily information from 1979 to now.
- Climate Change Info: These models and scenarios are presented in the assessment report (FAR, SAR, TAR, AR4, AR5). Each model at different spatial and temporal scales, present meteorological parameters up to year 2100.

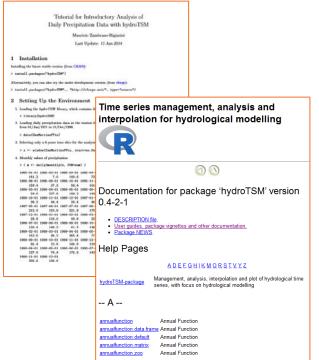





### The Two-Way Challenge

- Two challenges for consultants when using these sources:
- Drain on time: From capturing the information to transform the data to information.
- Processing limitations: The size of the information makes the use of spreadsheets a difficult to process.



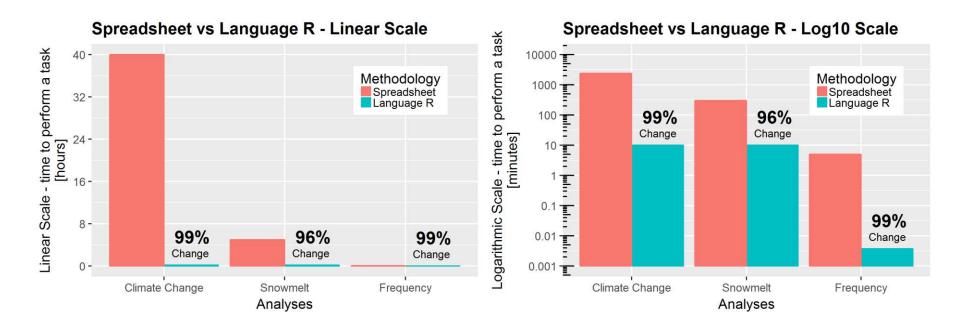

#### R Language: A possible solution for hydrology

- But first... What is R?
- R is a free, open-source software environment, released in 1993.
- Became the standard problem-solving tool for researchers in industry, government, and academia. Specifically to handle large quantities of data.
- R uses a command line interface.
- The capacities of R can be extended with thousands of public libraries available in several areas of knowledge. (+10,000 April 2017)



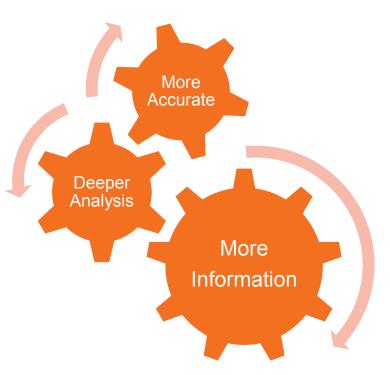
# R Language: A possible solution for hydrology

- **HydroTSM**: Hydrological data and time series analyses.
- EcoHydRology : Snowmelt models to Baseflow analyses
- Evapotranspiration: Evapotranspiration.
- ncdf4: Enables interacting with netCDF files.
- nsRFA: Frequency analyzes.
- caret: Predictive models includes: artificial neural networking, machine learning, parallel procesing, bootstrapping, and resampling.
- Parallel: Parallel computing.




## My R Solution: Hydro library

- Short script...to a personal library called Hydro.
- Now, +40 libraries. Based on my own necessities with custom-made script to improve hydrologic studies in any region of the world.
- Examples of the library are:
  - Climate Change Analysis => Next IMWA Presentation
  - Snowmelt model; and,
  - Frequency Analysis




#### **My R Solution: Hydro library**



### My R Solution: Hydro library

 An important reduction in analysis preparation time, which leads to broader and deeper analyses, such as correlation matrixes, cluster analysis, artificial neutral network or Bayesian statistics.



#### Conclusions

- The amount of hydrological information has increased dramatically.
- Time to go beyond traditional tools that kept us in our comfort zone.
- Script-based solutions like R bridge gap between consultancy and academia with simplicity and innovation.

## **Questions?**