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1 INTRODUCTION 
Probabilistic methods combined with risk assessment are a better way to assess slope design in open pit mines 
compared to deterministic methods. These methods are suitable for use on evaluation of risk or when there is 
uncertainty in the input parameters. 

Probabilistic analyses require more computer power than deterministic analysis. In many case a probabilistic 
analysis requires ten to thousands more computer resources than an equivalent deterministic analysis. Methods 
like Monte Carlo simulation (MC) may require thousands of analyses depending on the number of variables 
considered in the model. Other methods like First Order Second Moment (FOSM) or Point Estimate Method 
(PEM) and may require tens to hundreds of analyses. 

Monte Carlo simulation is applied routinely today on simple analyses like wedge stability or limit equilibrium 
analysis; current computers can carry thousand of analysis in a relatively short period of time. This is not the 
case when more complex models are built like 3D models at mine scale including complex mining sequences, or 
dynamic analysis of a 3D model. Large scale models can run for hours even in fast computers, where the Monte 
Carlo method is not an option other alternative methods should be used.  

This paper compares four different methods and presents the equations required to use a Modified Point Estimate 
Method (mPEM) presented by Harr (1989). The methods are compared using simple examples in the paper. 

Recommended probabilities of failure for open pit design are also presented. 

2 PROBABILISTIC METHODS USED IN STABILITY ANALYSIS 
Stability analysis is the main consideration used to define the geometry of a slope. It is possible to identify 3 
scales of analysis used to define the pit slope: 

• Bench scale 
• Inter-ramp scale 
• Overall scale 

A discussion about the recommended probability of failure (Pf) is given in the next section. Methods to assess Pf 
are discussed below. 

2.1 METHODS OF ANALYSIS 

2.1.1 Monte Carlo Simulation 
MC is a simple method that evaluates the problem many times using random input parameters. For each analysis 
Pf is computed by evaluating a target function. The method requires a definition of failure to be established prior 
to the analysis being undertaken. Examples include deformation at a specific point larger than a predefined 
value, Factor of Safety (FS) < 1.0 or Reliability Index (β) less then βcrit. 

Some issues to keep in mind when MC is used:  

• Consider the proper distribution that best represents the variables included in the model e.g. normal 
distribution might produce negative numbers that have no physical meaning like negative friction or 
cohesion. In these cases it is better to use a log normal distribution. 

• Where appropriate, the model should include correlation between variables. In these cases independent 
generation of random parameters is not appropriate. For correlated parameters equations 1 to 5 may be 
used. 

𝑁1 = �−2𝑙𝑛𝑅1cos (2𝜋𝑅2)                                                            (1) 
𝑁2 = �−2𝑙𝑛𝑅1sin (2𝜋𝑅2)                                                            (2) 
𝑁2∗ = 𝑁1𝜌𝑋𝑌 + 𝑁2�1 − 𝜌𝑋𝑌2                                                            (3) 
𝑥1 = 𝜇𝑥 + 𝑁1𝜎𝑥                                                                              (4) 
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𝑦1 = 𝜇𝑦 + 𝑁2∗𝜎𝑦                                                                             (5) 
Where  

R1 and R2 are independent random numbers between 0 and 1 with uniform distribution. 
N1 and N2 are independent random numbers normally distributed with average 0 and standard 
deviation (σ) 1. 
N2

* is the random number correlated with N1. 
ρxyis the correlation coefficient between random variables X and Y. 
µx, σx, µy, σy are average and standard deviation of variables X and Y. 

• Run enough simulations to ensure the control variable (deformation, FS or Reliability Index (β)) is 
accurate enough. If the error on the probability of failure is defined by α according Figure 1. It is possible 
to estimate the number of simulations required using Equation 6: 

𝑛 = �𝑑
𝛼
�
2 1−𝑝

𝑝
                                                                              (6) 

Where: 
n Number of simulations 
d Normal standard deviate estimated form Table 1 
α Acceptable error in the analysis to assess the probability of failure 
p Probability of failure 
 

 
Figure 1:  Distribution of Probability of Failure 

Table 1:  Normal Standard Deviate 

Percentage of Confidence 
(%) 

Normal Standard Deviate 
(d) 

80 1.28 
85 1.44 
90 1.64 
95 1.96 
99 2.57 

Two issues should be noted in respect of Equation (6): the number of Monte Carlo simulations required is not a 
function of the number of variables involved in the problem. Second, probability of failure is not known in 
advance, so in order to use Equation 6 the probability (p) should be estimated. This may seem a big drawback in 
having to estimate the number of iterations required, but in general, an engineer will be able to assess the 
probability of failure required for a specific design.  

Monte Carlo simulation is popular on simple problems were a large number of simulation can be run in minutes. 
It doesn’t require an assumption about the distribution of the target function. The method is not suitable for 
complex problems (3D models at mine scale, dynamic analyses) where one simulation takes hours and in some 
cases days. 
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Example 1: The probability of failure for a slope is estimated to be p=0.05, calculate the number of Monte Carlo 
simulations required to assess the probability in a range ± 10% around the estimated p with 95% of confidence. 

In this case d=1.96, α=0.1 and p=0.05  

𝑛 =
1.962

0.12
(1 − 0.05)

0.05
= 7299 

Example 2: The stability for planar failure indicated in Figure 2 can be assessed using Equations 7 to 10. 

 
Figure 2:  Planar Slope Failure. 

 𝑊 = 1
2
𝛾𝐻𝐵               (7) 

𝑁 = 𝑊𝑐𝑜𝑠𝜃       (8) 
𝑅 = 𝑐𝐿 + 𝑊𝑐𝑜𝑠𝜃𝑡𝑎𝑛𝜙                                           (9) 

𝐹𝑆 = 𝑐𝐿+𝑊𝑐𝑜𝑠𝜃𝑡𝑎𝑛𝜙
𝑊𝑠𝑖𝑛𝜃

      (10) 
Note that in the previous equations: L is the length of the joint, c is the cohesion, φ is the friction angle and γ is 
the unit weight. The unit weight, the force due to cohesion and the friction were assumed to be variables with log 
normal distribution, the values used in the analysis are indicated in Table 2. It was assumed that there is no 
correlation between friction and cohesion. 

Table 2:  Parameters 

Variable Average 
Value 

Variance 
(%) 

Standard 
Deviation 

Distribution 

Unit Weight [kN/m3] 27 10 2.7 Log normal 
Cohesion [kN] 9.6 40 3.84 Log normal 
Friction (tan 𝜙) 0.577 12 0.069 Log normal 

The probability of failure of the slope shown in Figure 2 was calculated using n=1000 Monte Carlo simulations, 
the value obtained is Pf =0.215, E[FS]=1.126 with a Standard Deviation σ=0.158. To assess the range of 
probability of failure with a confidence of 90% Equation 6 is used, solving for α where: d=1.64 n=1000 
p=0.215 

𝛼 = 1.64�
(1 − 0.215)

(1000)(0.215)
= 0.060 

There is a 90% chance that the actual probability of failure is in the range: 

[0.215 - 0.215 x 0.060, 0.215 + 0.215 x 0.060] = [0.202, 0.228]. 

Figure 3 shows the variation of the probability of failure along with the upper and lower limits and the number of 
Monte Carlo simulations. 
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Figure 3:  Probability of Failure vs Number Monte Carlo Simulations 

The three methods are shown in the following sections are part of a family of probabilistic methods based on an 
assessment of the mean values and standard deviation (or Variance) of the target function. These methods do not 
assess the full distribution of the target function therefore an assessment about the expected distribution of the 
target function should be made (normal, lognormal, u other).  

2.1.2 First Order Second Moment Method (FOSM) 
This method is based on a Taylor’s series expansion on the target function (f(xi)) about some point. The method 
provides an estimate of the moments (mean and standard deviation) of the target function based on moments of 
the N inputs variables.  

The Taylor series expansion for a multi variables function f(xi) retaining only the linear components is shown in 
Equations 11 and 12: 

𝑦 = 𝑓(𝑥) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁)                                                                           (11) 

𝑦 = 𝑓(𝑥) = 𝑓(𝑥𝚤�) + ∑ (𝑥𝑖 − �̅�𝑖)𝑛
𝑖=1

𝜕𝑦
𝜕𝑥𝑖

                                                        (12) 

From the previous equations it is possible to prove (US ACE, 1997) the expected value of y (E[y]) and the 
Variance of y (Var[y]) can be calculated as shown in Equations 13 and 14: 

𝐸[𝑦] = 𝑓(�̅�𝑖) + 1
2
∑ 𝜕2𝑦
𝜕𝑥𝑖𝜕𝑥𝑗

𝐶𝑜𝑣(𝑥𝑖, 𝑥𝑗)                                             (13) 

𝑉𝑎𝑟[𝑦] = ∑��𝜕𝑦
𝜕𝑥𝑖
�
2
𝑉𝑎𝑟[𝑥𝑖]� + 2∑ �𝜕𝑦

𝜕𝑥𝑖

𝜕𝑦
𝜕𝑥𝑗

𝐶𝑜𝑣(𝑥𝑖 , 𝑥𝑗)�                (14) 

It is common not to use the expression with Covariance in Equation 13. (US ACE, 1997). Equations 13 and 14 
require the evaluation of the derivative of the target function y with respect to the variables. This can be 
estimated using Equation 15. 

𝜕𝑦
𝜕𝑥𝑖

≈ 𝑓(�̅�1,…,�̅�𝑖+𝜎𝑖,… ,�̅�𝑁)−𝑓(�̅�1,…,�̅�𝑖−𝜎𝑖,…,�̅�𝑁)
2𝜎𝑖

                                             (15) 

This method requires 2N+1 evaluations of the target function. In some cases where target function is not known 
the evaluation is done via numerical analyses, this imply that it will be required 2N+1 analyses; for instance, 
slope stability analysis using limit equilibrium methods and considering material properties as variables will 
require several analyses to evaluate Equation 15. 

The method is applied to the planar failure shown in Figure 4. In this case, it was considered that the joint dip is 
variable; a bolt has been added to improve stability. The variables assumed in the problem are shown in Table 3. 
No correlation was assumed between the variables. 
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Figure 4:  Planar Failure Including Bolt Support 

Table 3: Parameters 

Variable Symbol Average 
Value 

Variance 
(%) 

Standard 
Deviation 

Distribution 

Unit Weight [kN/m3] W 27 10 2.7 Log normal 
Cohesion [kPa] C 9.6 40 3.84 Log normal 
Friction (tanφ) φ 0.577 12 0.069 Log normal 
Joint dip (θ) θ 35º 10 3.5º Normal 
Bolt Force [kN] F 70 10 7 Normal 
Bolt Inclination δ 10º 20 2º Normal 

FS was calculated using the following expression: 

𝐹𝑆 = 𝑐𝐿+[𝑊𝑐𝑜𝑠𝜃+𝐹𝑐𝑜𝑠(90−𝜃−𝛿)]𝑡𝑎𝑛𝜙+𝐹𝑠𝑖𝑛(90−𝜃−𝛿)
𝑊𝑠𝑖𝑛𝜃

                  (16) 
Where the terms are defined in Figure 4 and Table 3 and where L is the length of the joint. 

In this case, the target function is defined by Equation 16. It is evaluated 2N+1 times, in order to calculate the 
derivatives defined in Equation 15, and the results are presented in Table 4. 

Table 4:  FOSM Results 

FS Dens Friction Cohesion Joint dip Bolt 
Force Bolt inc df/dxi (df/dxi)^2 

Var[xi] 
1.328 27.0 30.0 9.6 35.0 70.0 10.0 - - 
1.282 29.7 30.0 9.6 35.0 70.0 10.0 -0.0188 0.005167 
1.384 24.3 30.0 9.6 35.0 70.0 10.0 - - 
1.460 27.0 33.6 9.6 35.0 70.0 10.0 0.03541 0.032504 
1.205 27.0 26.4 9.6 35.0 70.0 10.0 - - 
1.472 27.0 30.0 13.4 35.0 70.0 10.0 0.03785 0.041913 
1.183 27.0 30.0 5.7 35.0 70.0 10.0 - - 
1.390 27.0 30.0 9.6 38.5 70.0 10.0 0.00389 0.000371 
1.363 27.0 30.0 9.6 31.5 70.0 10.0 - - 
1.342 27.0 30.0 9.6 35.0 77.0 10.0 0.00201 0.000399 
1.314 27.0 30.0 9.6 35.0 63.0 10.0 - - 
1.326 27.0 30.0 9.6 35.0 70.0 12.0 -0.0007 3.49E-06 
1.329 27.0 30.0 9.6 35.0 70.0 8.0  - 

       Var[FS] 0.0804 

The expected value of FS is E[FS]=1.328, and is calculated using Equation 13 and corresponds to the evaluation 
of Equation 16 using the average variables, if covariance is not considered. The variance of FS is 
Var[FS]=0.0804 and is calculated using Equations 14 and 15. 

Methods like FOSM and Point Estimate Methods (described below) provide a way to assess the average and 
variance of FS, but they do not provide additional information about the actual distribution of the main variable, 
in this case FS. 
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To assess Pf an assumption must be made about the distribution of FS. In this example, both a normal, and log 
normal distribution have been assumed and the results are shown in Figure 5. For this problem, failure is defined 
as a configuration of geometry, density and rock bolt properties with FS<1.0, therefore Pf is calculated as the 
area below the curve for FS<1.0.  

For both distributions Pf is: Normal Distribution: Pf=0.123   Log Normal Distribution: Pf=0.107 

As is expected the Pf is a function of the distribution assumed. 

 
Figure 5:  Normal and Log Normal Distribution for Factor of Safety 

2.1.3 Point Estimate Method (PEM) 
The Point Estimate Method developed by Rosenblueth (1975), Harr (1987) is used to assess the expected value 
E[y] and the variance Var[y], where y is a function of N variables (Equation 17). 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, . . . 𝑥𝑁)                                                             (17) 
For each variable xi there are two evaluation points They are defined as 𝑥𝑖+ = �̅�𝑖 + 𝜎𝑥𝑖  and 𝑥𝑖− = �̅�𝑖 − 𝜎𝑥𝑖 . The 
function y is evaluated for all the possible combinations of the evaluation points, this requires 2N evaluations. 
For instance, for N=2, y is evaluated in the following points (Equation 18): 

 (�̅�1 + 𝜎𝑥1, �̅�2 + 𝜎𝑥2)                                                                           (18) 
(�̅�1 − 𝜎𝑥1, �̅�2 + 𝜎𝑥2) 
(�̅�1 + 𝜎𝑥1, �̅�2 − 𝜎𝑥2) 
(�̅�1 − 𝜎𝑥1, �̅�2 − 𝜎𝑥2) 

The expected value for y and its variance are calculated using Equations 19 and 20 

𝐸[𝑦] ≈ ∑ 𝑝𝑘𝑦𝑘2𝑁
𝑘=1                                                                            (19) 

𝑉𝑎𝑟[𝑦] ≈ ∑ 𝑝𝑘2𝑁
𝑘=1 𝑦𝑘2 − 𝐸[𝑦]2                                                    (20) 

and, where pk is calculated by Equation 21: 

𝑝𝑘 = 1
2𝑁
�1 + ∑ ∑ 𝑆𝑖𝑆𝑗𝜌𝑖𝑗𝑁

𝑗=𝑖+1
𝑁−1
𝑖=1 �                                               (21) 

Where ρij is the correlation coefficient between xi and xj, Si=+1 for points greater than the mean and Si=-1 for 
points smaller than the mean. For instance for the third equation of equation 18, S1=+1 and S2=-1. 

Similar to the FOSM method, PEM provides an estimate for the average and the Variation of the main variable. 
There is no additional information about the actual distribution of the variable. To assess the probability of 
failure an assumption about the distribution of y must be made. 

PEM was applied to the problem presented in Figure 4. The results are summarised in Table 5. 
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2.1.4 Modified Point Estimate Method (mPEM) 
Modified Point Estimate Method is a variation of the PEM that reduce the number of analyses required. PEM 
requires 2N analyses to assess the probability of failure, mPEM requires only 2N. The method was presented by 
Harr (1989) using an example. The equations used in the method are presented here. 

𝑦 = 𝑓(𝑥1, 𝑥2, 𝑥3, . . . 𝑥𝑁)                                                            (22) 
Equation 22 represents the relationship between the input variables xi and output parameters y. The parameter y 
could be FS and xi could be density, cohesion, friction or other variables in the model. The function f() 
represents a particular analysis to calculate y, it could be limit equilibrium analysis, finite element analysis, or an 
analytical expression. 

For each variable the average (equation 23) and standard deviation are known (Equation 24) 
𝑋� = (𝑥1���, 𝑥2���, 𝑥3���, … 𝑥𝑁����)                                                             (23) 
𝑆 = (𝜎1,𝜎2,𝜎3, …𝜎𝑁)                                                                           (24) 

The correlation between the variables is also known. K represents the correlation matrix, where the term kij is the 
correlation between the variables i and j. 

The method requires solving the Eigen problem indicated by Equation 25, where the subindex i represents an 
eigenvalue λ and eigenvector φ related to variable i. 

(𝐾 − 𝜆𝑖𝐼)𝜙𝑖 = 0                                                                           (25) 
The eigenvalues λi are normalised, such Σλi=N. 

For each eigenvalue λi, and eigenvector φi, the target function y is evaluated for the evaluation points defined by 
Equations 26 and 27: 

𝑦𝑖+ = 𝑓(�̅� + 𝜙𝑖√𝑁𝜎𝑖)                                                             (26) 
𝑦𝑖− = 𝑓(�̅� − 𝜙𝑖√𝑁𝜎𝑖)                                                             (27) 

Where y is the result parameter calculated for a specific analysis i.e. FS of slope stability, beam deflection, or 
other. The expected values for y and y2 are calculated using Equations 28 and 29 

𝐸[𝑦𝑖 , 𝜆𝑖] = 𝑦𝑖
++𝑦𝑖

−

2
𝜆𝑖
𝑁

                                                                           (28) 

𝐸[𝑦𝑖2, 𝜆𝑖] = �𝑦𝑖
+�

2
+�𝑦𝑖

−�2

2
𝜆𝑖
𝑁

                                                             (29) 
The expected value of the variable y and its Variance can be calculated using Equations 30 and 31. 

𝐸[𝑦] = ∑ 𝐸[𝑦𝑖 , 𝜆𝑖]𝑁
1                                                                            (30) 

𝑉𝑎𝑟[𝑦] = ∑ 𝐸[𝑦𝑖2, 𝜆𝑖] − (∑ [𝑦𝑖, 𝜆𝑖]𝑁
1 )2𝑁

1                                 (31) 
When the expected value E[y] and variance Var[y] are calculated it is possible to assess the probability of failure 
assuming a distribution for the variable y (normal, log normal or other). 

mPEM was applied to the problem shown in Figure 4, the results are presented in Table 5 and discussed in the 
next section. 

2.2 DISCUSSION 
Four methods were used to analyse the same problem, the results of which are summarised in Table 5. The case 
of friction and cohesion correlated (ρ=-0.5) was included. Two Monte Carlo simulations (MC) with 20000 trials 
are also included, in the first one (MC1) the density, friction and cohesion have a log normal distribution; in the 
second simulation (MC2) all the variables have normal distribution. 

The three alternative methods are compared with the results obtained for MC simulation. Table 5 shows the 
variability in results obtained from the different methods when applied to the same problem. 

FOSM tend to overestimate the probability of failure even though the assessment for the variance was close to 
the values calculated with MC. FOSM assumes that the average value of the target function is the same as the 
value obtained evaluating average values for the input parameters. This is not always true. 

PEM overestimates Pf when compared to MC results. It produces a result closer to MC when all the parameters 
have a normal distribution. 

mPEM falls in between FOSM and PEM, producing better results than FOSM with almost the same number of 
analyses, but tends to overestimate Pf like the other two methods. 
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Table 5:  Summary of Results for Different Methods 

Correlation Parameter FOSM PEM mPEM MC1 
(n=20000) 

MC2 
(n=20000) 

ρ=0 

E[FS] 1.328 1.386 1.420 1.396 1.389 
σ [FS] 0.283 0.216 0.297 0.270 0.250 

Pf (normal) 0.123 0.037 0.079 0.0102 0.0272 Pf (log normal) 0.107 0.021 0.056 

ρ=-0.5 

E[FS] 1.328 1.386 1.420 1.389 1.395 
σ [FS] 0.249 0.163 0.263 0.221 0.231 

Pf (normal) 0.094 0.009 0.055 0.0008 0.0066 Pf (log normal) 0.075 0.003 0.034 

When MC simulations are compared, is interesting to note the influence that the correlation and distribution 
assumed for the input parameters has in the final result. Changing the correlation from 0 to -0.5 reduces the Pf 12 
times. 

2.3 INTERPRETATION OF THE PROBABILITY OF FAILURE 
The probability of failure (expressed in %) can be interpreted as the number of failure we should experience on 
average in 100 “trials”. This is difficult to relate to overall pit slope stability, in a typical open pit, one “trial” of a 
combination of height, rock type, jointing and water is present in the pit. At inter-ramp scale the number of 
“trials” can be considered higher but still will be only a few. 

At bench scale, the situation is different. If the probabilistic analysis was carried out for a particular rock type at 
bench scale; it is reasonable to think that there are many “trials” of the design along a wall with similar rock type 
and joint conditions. For instance, if we assume the width of the failure at bench scale is similar to the height of 
the bench, in a 150m long wall with 6 benches 10 m high there are 90 “trials” for the design. 

If the probability to have a failure in one bench is equal to p, then the probability to have n or more failures can 
be calculated with Equation (32). 

𝑃(𝑋 ≥ 𝑛) = 1 − ∑ 𝑁!
𝑖!(𝑁−𝑖)!

𝑝𝑖(1 − 𝑝)𝑁−𝑖𝑁
𝑖=0                                 (32) 

Where: N is the total number of “trials”. 

If Equation 32 is applied with N=90 and p=40% the results are presented in Figure 6. 

 
Figure 6:  Probability of n Failures and Bench Scale. 

From previous graphs is possible to conclude that is almost certain that the wall will experience 25 or fewer 
bench failures, there is a 50% probability the number of failures is less than 36 and it is unlikely that there will 
be more than 45 bench failures. Despite the high probability of failure for a bench (40%) it is unlikely to expect 
that 50% or more of the length of the benches will fail. 
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3 ACCEPTABLE PROBABILITY OF FAILURE IN SLOPE DESIGN 
Steffen (2006) suggested that the pit design criteria should be based on risk rather than factor of safety or 
probability of failure. The risk is calculated considering the probability of failure and the consequence of the 
failure. 

Consequence should include fatality risk and economical losses. In this paper, we have concentrated on the 
probability of failure as design criteria in open pits, no comments are included about risk values to be used as 
design criteria. 

In open pits is possible to identify three different slopes scales. 

• Bench scale 
• Inter ramp slope 
• Overall slope 

Without quantifying the risk of failure for each case, it is possible, at least intuitively, recognise that a different 
probability of failure should be used for each case because the impact (consequence) of failure for each case is 
different. 

Sjoberg (1999) presents Table 6, were the consequence of the failure is related to probability of failure and 
Reliability Index β. 

𝛽 = 𝐸[𝐹𝑆]−1
𝜎[𝐹𝑆]

                                                                              (33) 

Table 6:  Acceptance Criteria for Rock Slopes (after Sjoberg, 1999) 

Category and  
Consequence of Failure 

Example Reliability Index 
β 

Probability of Failure 
Pf 

Not serious Non-critical benches 1.4 0.1 
Moderately serious Semi-permanent slopes 2.3 0.01 to 0.02 
Very serious High/permanent slopes 3.2 0.003 

Schellman (2006) presents probabilities of failure based on the volume of material involved in the failure. Table 
7 shows the probabilities used in Mantoverde Mine. 

Table 7:  Acceptance Criteria for Rock Slopes at Mantoverde Mine 

Mass Involved in Failure 
(t/m) 

Factor of Safety [FS] Probability of Failure [Pf] 

<15,000 >1.20 <0.12 
15,000 – 30,000 >1.25 <0.10 

>30,000 >1.30 <0.08 

Pothitos (2007) presents Table 8 indicating the probability of failure used in Ok Tedi mine. 

Table 8:  Design Probability of Failure for Mine Slope Design – Ok Tedi. 

Design Situation Probability of Failure Commonly Used 
or Accepted in Practice 

Design Element Applicability Geotechnical 
Conditions 

Range 
(%) Preferred Value 

Bench Slope 

General - 10 to 50 - 

- Continuous 
Defects 0 to 10 10 

- Discontinuous 
Defects 10 to 50 20 – 30 

Overall or inter-ramp 
slope General - 1 to 3 - 

Overall or inter-ramp 
including haul road or 
key infrastructure 

- - <1 - 

Tables 6 to 8 indirectly include failure size in the probability of failure accepted for design. When the failure size 
increases or a large portion of the pit is involved in a potential failure, the probability of failure is reduced. 
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Kirsten (1983) shows a different table with probability of failure related to serviceable life, public liability and 
monitoring (Table 9). 

Table 9:  Comparative Significance of Probability of Failure. 

Probability  
of Failure  

(%) 

Design Criteria on Basis of which Probability of 
Failure is Established 

Aspects of Natural Situation in 
Terms of which Probability of 

Failure can be Assessed 

Serviceable Life Public  
Liability 

Minimum 
Surveillance 

Required 

Frequency of 
Evident Slope 

Failures 

Rate1 of 
Evidently 
Unstable 

Movements 

50 to 100 

Effectively zero Public access 
forbidden 

Serves no 
purpose 
(excessive 
probability 
tantamount to 
failure 

Slope failures 
generally 
evident 

Abundant 
evidence of 
creeping valley 
sides 

20 to 50 

Very short term 
(temporary open 
pit mines2 - 
untenable risk of 
failure in 
temporary civil 

Public access 
forcibly 
prevented 

Continuous 
monitoring with 
intensive 
sophisticated 
instruments 

Significant 
number of 
unstable slopes 
works 

Clear evidence 
of creeping 
valley sides 

10 to 20 

Very short term 
(quasi-temporary 
slopes in open pit 
mines - 
undesirable risk 
of failure in 
quasi-temporary 
civil works) 

Public access 
actively 
prevented 

Continuous 
monitoring with 
sophisticated 
instruments 

Some unstable 
slopes evident 

Some evidence 
of slowly 
creeping valley 
sides 

5 to 10 

Short term (semi-
temporary slopes 
in open pit 
mines3, quarries 
or civil works) 

Public access 
prevented 

Conscious 
superficial 
monitoring 

No ready 
evidence of 
unstable slopes 

Extremely 
slowly creeping 
valley sides not 
readily evident 

1.5 to 5 
Medium term 
(semi-permanent 
slopes) 

Public access 
allowed 

Incidental 
superficial 
monitoring 

No unstable 
slopes evident 

No unstable 
movements 
evident 

Less than 0.5 
Very long term 
(permanent 
slopes) 

Public access free No monitoring 
required 

Stable slopes No movements 

Note: 
1 The rate of movement implied in the natural situation is with regard to geological time. The quantitative assessments are 

further given with regard to a significant number of locations at which failure can occur. 
2 The lateral extent of a location where failure can occur is of the order of the height of the affected slope. 
3 Small open pit mines lie in the range of 5% to 15% allowable probability of failure depending upon the extent of 

monitoring as given. The corresponding range for large open pit mines is 15% to 30%. 

The previous tables, in general, do not have a common definition for the slopes and recommend different 
probability of failure for similar conditions. Application of the previous tables to an open pit produces a common 
range of probability of failure for use in design as presented in Table 10. It is important to keep in mind that 
Schellman and Pothitos presented probabilities of failure used for a specific mine; Sjoberg and Kisten present 
general recommendations of probability of failure for slope design. 
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Table 10:  Summary of Probability of Failure in Percentage 

Design Element Sjoberg Schellman Pothitos Kirsten Recommended 
Bench 10 12 10 – 50 20 to 50 15 to 30 
Inter-ramp 1 to 2 8 to 10 1 to 3 

<1* 
5 to 10 2 to 5 

<1* 
Overall Slope 0.3 <8 1 to 3 

<1* 
1.5 to 5 1 to 2 

<1* 
 * Overall or inter-ramp including haul road or key infrastructure 

4 CONCLUSIONS 
This paper presents the equations required to apply the mPEM developed by Harr (1989). The method was 
compared with others: FOSM, PEM and MC. 

MC is used with a large number of simulations; this allows us to assume that the results obtained are close to the 
exact solution. It is important to note the MC simulations do not require an assumption about the distribution of 
the target function (FS or other). If a large enough number of runs is done, the true distribution of the target 
function is modelled with enough precision. MC is not suitable for large analysis where one run requires hours 
or in some cases days for computer time. Simplified approach has to be made in those cases. 

mPEM requires 2n evaluation of the target function (analyses), very similar to the 2n+1 analyses required with 
FOSM but mPEM produces a better results. PEM requires 2n analyses producing results closer to the values 
calculated with MC. 

Probabilistic analysis appears more appealing than deterministic analysis, but introduces another layer of 
uncertainties that should be considered when probabilistic methods are used. Based on the results obtained in the 
example shown in this paper, the following three factors have an influence in the final result: 

• Correlation. The correlation between different input parameters should be addressed. For the examples 
shown, Pf changes with the correlation assumed between cohesion and friction. 

• Distribution function of the Factor of Safety or target function used in design. Some of the probabilistic 
methods only provide an assessment for the average and variance of the FS. To calculate the probability 
of failure, a distribution function must be assumed (normal, log-normal or other). The choice of the 
distribution function changes the resultant Pf. 

• Method used to assess probability of failure. It has been shown in the example analyses that there is 
variability in the results depending on the method used. This variability could be large enough that in 
some cases we might reject a design, but using a different method we may find the design satisfactory. 

The paper includes an examination (non exhaustive) of Probability of Failure used in slope design, a range of 
values is recommended to be used in design of bench, inter-ramp and overall slope angle. 
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