Ventilation System Design for the Wassa Underground Mine

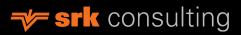
By:

Brian S. Prosser – SRK Consulting (US) Keith G. Wallace, Jr. – SRK Consulting (US) Rod Redden – Redden Mining Adeline Akansobe – Golden Star Ltd.

Presented at the Seventeenth North American Mine Ventilation Symposium

April 28 to May 1, 2019

Montréal, Quebec, Canada

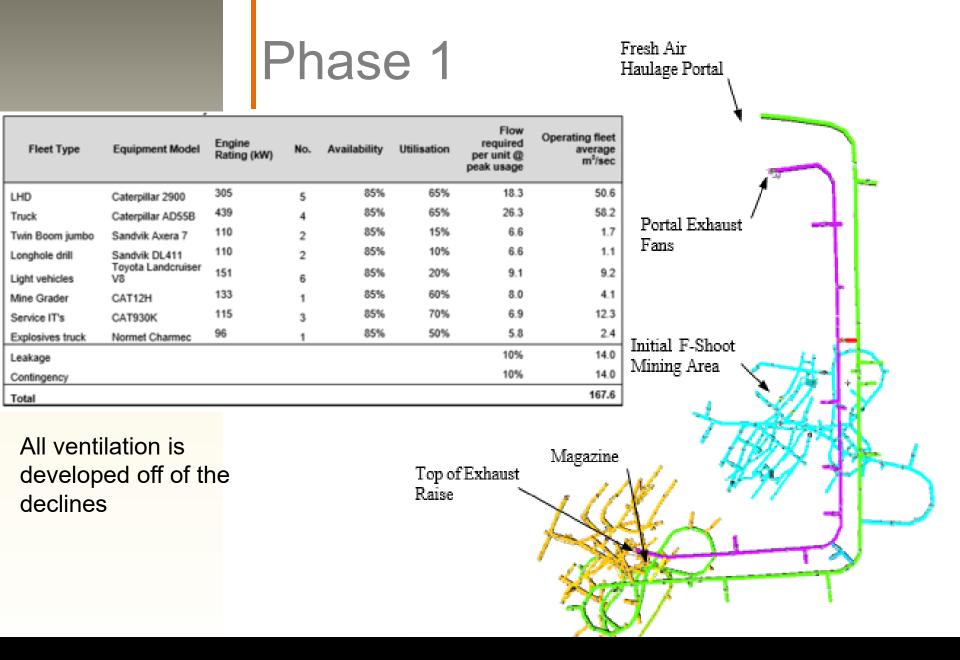


Location

The mine is located in Ghana which presents the difficulty of an elevated surface wet bulb temperature

The Wassa Project

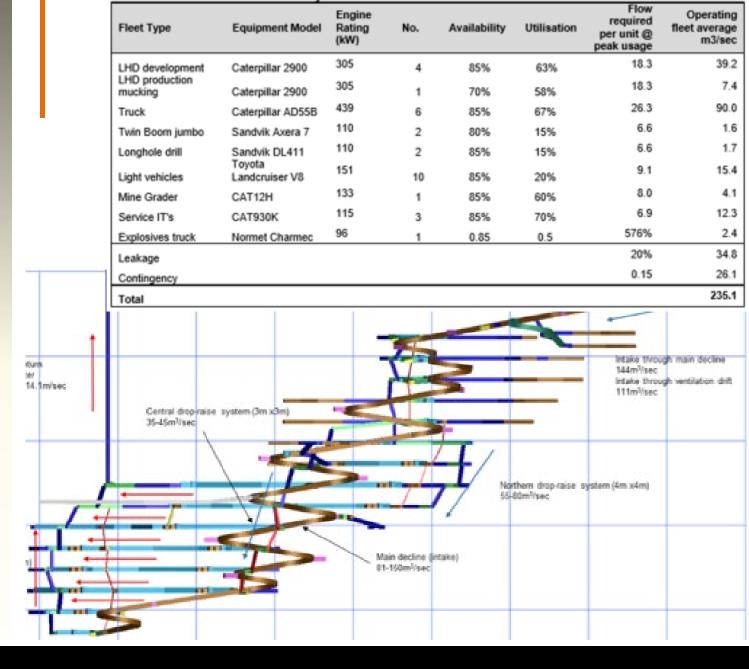
The Wassa Underground Mine was designed to be developed out of the bottom of an existing open pit.


The ventilation design was to be developed in two phases;

Phase 1 - development and initial production

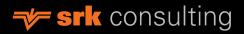
Phase 2 – full production

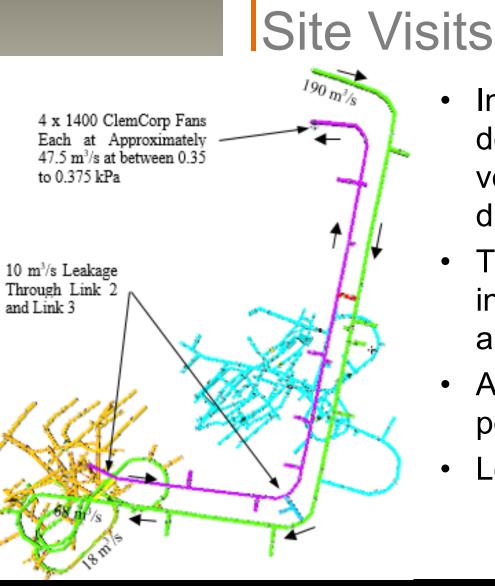
The production rate was increased which required a redevelopment of the ventilation plan



Phase 2

Flow through ventilation system is established


2,500 tpd production rate



Phase 2 Elevated Production

Increasing the production rate to 4,000 tpd required a greater diesel load


Equipment	Туре	engine size (kW)	Total Fleet	Fleet in Mine Operating	Utilisation (%)	Airflow per Unit (m³/s)	Operating fleet (m³/sec)
LHD development	Caterpillar 2900	305	2	2	100%	18.3	36.6
LHD production mucking		305	4	3	100%	18.3	54.9
LHD production backfill		305	0	0	100%	18.3	0.0
Truck	Caterpillar AD60	567	9	8	100%	34.0	272.2
Twin Boom jumbo	Sand vik Axera 7	110	2	2	0%	6.6	0.0
Longhole drill	Sand vik DL411	110	3	3	0%	6.6	0.0
Light ve hicles	Toyota Land cruiser	151	12	6	50%	9.1	27.2
Mine Grader	CAT12H	138	1	1	0%	8.0	0.0
Service IT's	CAT9BOK	115	З	2	100%	6.9	13.8
Charge-up machine	Normet Charme c	96	2	2	100%	5.8	11.5
Leakage						15%	62.4
Contingency						15%	62.4
Total							541.0

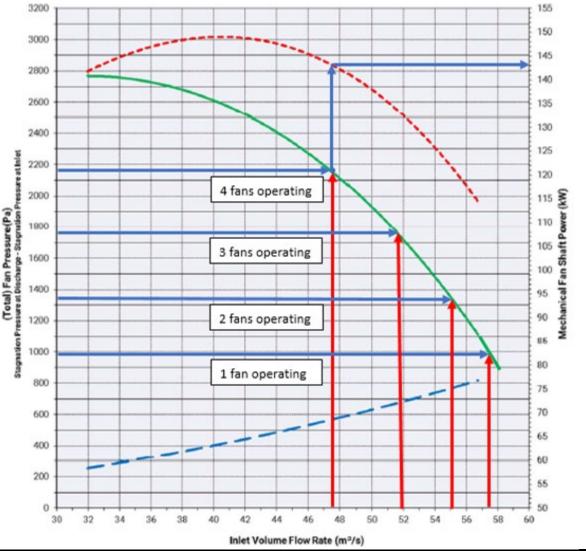
- In order to develop confidence in design assumptions the Phase 1 ventilation system was examined during a series of site visits.
- The resistance of ventilation infrastructure was determined and calculated
- Actual fan performance of the portal fans were examined
- Leakage rates were measured



Controls and Infrastructure

Closed Regulator on Abandoned Level

Single Equipment Door Between Fresh Air and Exhaust with Openings



Observations

- The average fan system efficiency measured for the temporary Phase 1 exhaust system was measured at 62%. The entry and exit losses associated with the four parallel fans are significant.
- Until the new exhaust ventilation raise is in, the mine will have no more than 170 m³/s at a delivered pressure of under 250 Pa (at roughly the 795 Level)
- There is significant leakage in the Link 3 access door (non-airlocked).
- The future mine plans need to include the drive to the new raise location
- The mining time and new fan commissioning needs to be evaluated
- The new ventilation system will need an exhaust fan to pull more air than the current 190 m³/s (roughly 350 m³/s)
- The fan needs to be sized based on long range ventilation needs
- A ventilation plan is needed on how to convert the existing system to the new system – this includes how to intake the current exhaust system and how to connect to the new exhaust raise.
- Leakage resistances and fan pressures were modified in the ventilation model to achieve a correlation error of less than 10%.

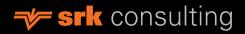
🐦 srk consulting

First Step to Increase Airflow

- Increase fan motor and advance the blade settings / increase blade pitch angle
- Increases the airflow from 165 m³/s to 249.8 m³/s
 - Operating four
 parallel fans at a
 higher pressure can
 cause issues upon
 starting (fourth fan
 may likely stall)

📌 srk consulting

Second Step – Full Upgrade

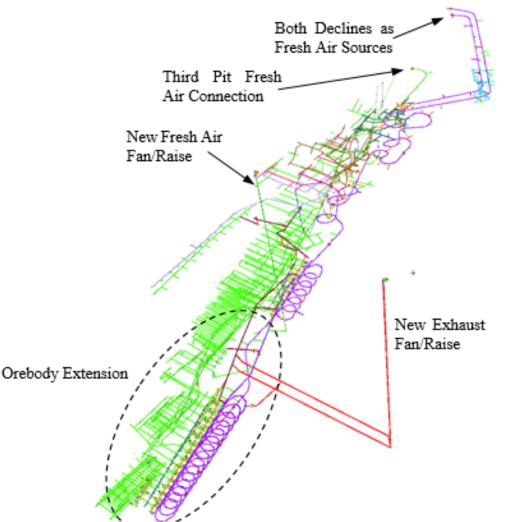


- Maximized portal exhaust fans
- Exhaust fans on new pit exhaust raise providing increased exhaust capacity
- New fresh air raise developed to alleviate high air velocities in the ramp system.
- Booster fan in lower exhaust transfer balances pressures and minimizes leakage

srk consulting

Phased Modeling Results

	_ Time Phase	Number Operating Stopes								
	Existing	745P	720D	695 D	ramp					T I
Control of		40	40	63	by 695		Leave with	tionin a .	The airflow	
leakage will-	2017 Q4	745P	720P	695P	670D	ramp	Issue with Intake/Exh	10001	allocation	
be critical		30	30	30	by ramp	50	Q1, perhap		was	
	#2018 Q1	695	670-1	670-2	645D	ramp				
Step Change	L	40	40	40	by ramp	85	695 to finish in Q4, and only mine 670 in Q1?			developed
	2018 Q2	670-1	670-2	645	620D	ramp	only mine	070 111 (for each of	
		40	40	80	by ramp	74				the mining
Ctoo	-2018 Q3	670-2	645-1	645-2	620D	595D	ramp			areas for
Step Change	-	40	40	45	33	by ramp	50			_
change	_2018 Q4	645	645	620	620	595	570D	545D	ramp	each
		45	30	40	40	40	by ramp by ra		62	quarter and
	2019 Q1	645	620	620	595	570D	545D	520D	Ramp	incorporated
		95	45	40	45	28	by ramp by ra	amp	50	
	2019 Q2	620	620	595	520	645D	545D	495D	ramp	into the
		35	35	35	35	30	20 by ra		56	ventilation
	2019 Q3	620	595	570	545	520	645D		by ramp	models
		35	40	40	40	40	25 by ra	amp	56	
	2019 Q4	620	570	545	520	645D	495D	470D	ramp	
		40	40	45	50	30	by ramp by	ramp	56	


Fan Operating Duty Points

	Portal Fans		Pit Fans			Lower Fans	
Time Phase	(m ³ /s) (k	Pa)	(m³/s)	()	kPa)	(m ³ /s)	(kPa)
Existing	174.4	1.185					
2017 Q4	174.0	1.198					
2018 Q1	168.0	1.386		80.0	1.753		
			surface	loss	0.257		
2018 Q2	167.0	1.390		80.0	1.753	regulated i	ntake
			surface	loss	0.257		
2018 Q3	175.8	1.144		80.0	1.413	regulated i	ntake
			surface	loss	0.257		
2018 Q4	161.0	1.567		80.0	1.985	114.	.0 3.241
			surface	loss	0.257	surface los	s 0.522
2019 Q 1	156.6	1.690		80.0	2.162	150.	0 5.101
			surface	loss	0.257	surface los	s 0.896
2019 Q2	158.4	1.638		80.0	2.118	150.	.0 4.991
			surface	loss	0.257	surface los	s 0.896
2019 Q3	157.3	1.669		80.0	2.165	150.	0 5.043
			surface	loss	0.257	surface los	s 0.896
2019 Q4	155.1	1.730		80.0	2.247	150.	0 5.096
			surface	loss	0.257	surface los	s 0.896

- The combination of the portal exhaust fans, pit exhaust fans, and lower exhaust booster fans were modeled on a time phased approach
- The staged ventilation models identified when the new fans were required and how they were required to be ramped up

📌 srk consulting

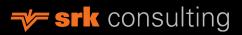
Third Step - Expansion

- Expansion of the equipment fleet and the addition of an increased ore body in the lower areas requires an elevated airflow.
- The increased depth and linear development required additional shafts for the ventilation system.
- The new exhaust raise would replace all exhaust fans, all other raises and portals would provide fresh air and a flow through system
- The new fresh air raise would be used if a refrigeration system was to be incorporated if the mine is developed deeper or the equipment load is further increased

The ventilation model was adjusted develop a 6.5 MW(R) bulk air cooler at the top of the new proposed fresh air raise to minimize air temperatures in the mine if a refrigeration system were to be incorporated

Refrigeration Review

- The heat load associated with auto-compression with all mining in the deeper reserves is calculated at approximately 1.9 MW
- The heat load associated with the mobile equipment load is approximately 8.5 MW
- The heat load associated with the rock mass was not separately calculated but with a VRT in the range of 33° C it was not projected to be significant for this depth.
- The natural cooling provided by fresh air circulating through the ventilation system was calculated at approximately 7.8 MW.
- There is a deficit of 2.8MW which indicates that the mine temperatures will either be elevated, a smaller operating equipment fleet is required, or that refrigeration is required.



Closing Comments

• The design of the ventilation system is an iterative process.

Scenario	Airflow	Refrigeration		
Original Phase 1	170	n/a		
Original Phase 2	235	n/a		
Increased Phase 2	540	2.8 to 6.5 MW		
Future	Further Production Increases at Greater Depths Will Require Additional Airflow and Refrigeratio			

Closing Comments

- The initial design assumptions must be checked against the infrastructure and control devices developed at the mine because not all mines utilize the same construction techniques and methodologies.
- The ventilation plan must be updated at the mine plan is further refined and new production areas are opened up
- Time staged modeling is useful to determine the sequencing of fans, raises, and electric power loads.

MAIN DECLINE MAIN DECLINE

