

Thermal Design of the Dry Creek Permafrost Stabilization Project

Christopher Stevens, PhD SRK Consulting, Inc.

Idrees Muhammad, P.Eng, M.Eng; Kisa Elmer, P.Eng; Bill Stanley Yukon Government, Highways and Public Works

Outline

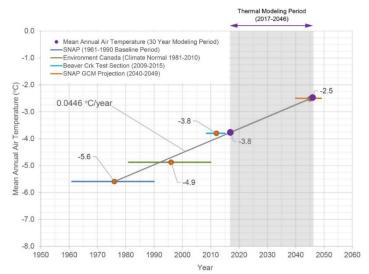
- Dry Creek Section, Alaska Highway
- History of the Site and Stabilization Project
- Geotechnical & Permafrost Conditions
- Preliminary Design Options Evaluated
- Sloped Thermosyphon Design
- Thermal Performance (modeled)
- Monitoring Plan

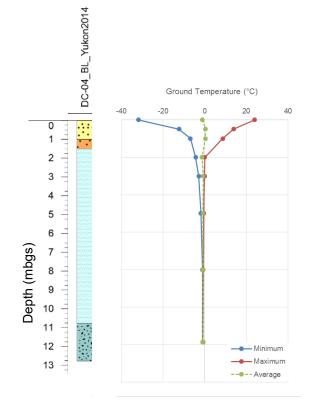
Dry Creek Highway Section

- Alaska Highway
- Hwy. km 1840.5 (+400 m)
- Approx. 30 km S. of Beaver Crk.
- Glaciofluvial deposit

History of Site & Project

Year	History of Site and Project
1995	Site development for borrow material, massive ground ice identified (excavation and drillholes)
1996	Construction of current highway alignment
1997 - Present	Highway distress observed and general maintenance
2012	Massive ground ice identified by SRK following review of Yukon Highway geotechnical data
2014	Site rehabilitation & ROW backslope protection
2017	Preliminary design: Evaluation of air convection embankment and thermosyphon designs to stabilize permafrost (Funded by YHPW & Transport Canada)
2018	Additional geotechnical drilling, advancement of thermosyphon design, optimization of the design, issue design report and IFC, installation of monitoring system
2019	Construction scheduled for October





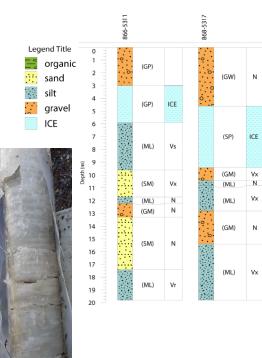
Site Climate & Ground Thermal Regime

- Recent MAAT approx. -3.8°C (2009-2015)
- MAAT approx. -5.6°C (1961-1990)
- MAAT approx. -4.9 °C (1981-2010)
- Warm permafrost (>-1.0°C)
- Talik beneath sideslopes

Historical Drill Data

- Drilling in mid-1990s to support borrow development
- Adequate characterization of index properties & stratigraphy
- Well and poorly graded sand and gravel underlain by silt, interbedded with sand and gravel
- 8 of 33 holes → massive ground ice (blue square symbols)



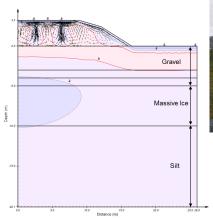

Legend

- Dry Creek Highway Section
- Recent Geotechnical Borehole with Ground Ice Type (Nbe)
- Recent Geotechnical Borehole with Ground Ice Type (ICE)
- Recent Geotechnical Borehole with Ground Ice Type (Vx,Vr,Vs)
- Historic Borehole wt (ICE)
- Historic Borehole wt (Vx,Vr,Vs)

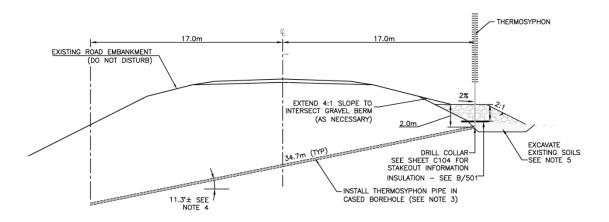
Recent Geotechnical Drilling

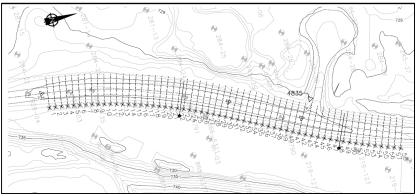
- Focus on characterization of foundation & ROW conditions
 - 2011 -2018 (21 holes)
- Massive ice
 - At least 9 m thick (variable thickness)
 - ROW 3 to 5 m bgs
 - ~3 m below base of embankment
- Yukon College geophysical surveys

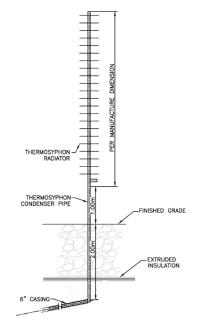
Consideration & Design Criteria


- Maintain current travel corridor and embankment geometry
- Minimize thermal disturbance from construction
- Limit need for re-routing of traffic during construction
- Design life of 30 years
- Minimum ground temperature of -2°C for the foundation (over specified area)
- Consideration of climate change within the design

Preliminary Design Options

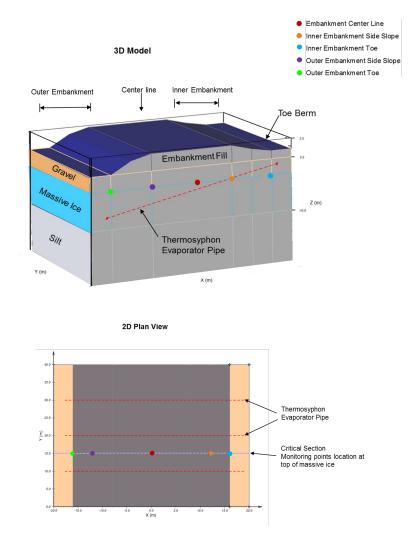

- Two options evaluated during preliminary design stage
- Air convection embankment (full ACE)
 - Reconstruction of embankment required
 - Unknown rock source / costly rock development
 - Marginal ground cooling early-on
 - Potentially less control on thermal performance
- Thermosyphons
 - Existing embankment with minor amount of earthwork
 - Rapid and dependable ground cooling to stability massive ground ice
 - Greater control over thermal performance

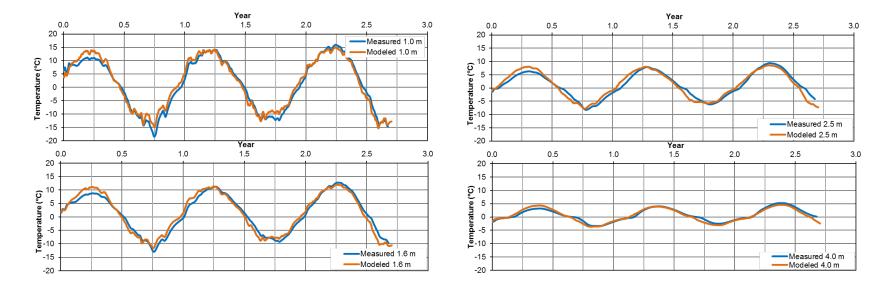

A thermosyphon-based design was predicted to provide more immediate and dependable ground cooling to stabilize the permafrost and massive ground ice with a more predictable project schedule and acceptable costs.



Design Section

- Sloped thermosyphon evaporator pipe (11.3°)
- Evaporator pipe 34.7 m long, with 7 m offset between pipes
- Minor excavation eastern embankment toe (fall construction)
- HDD & install of steel casing, installation of evap. pipe with slurry
- Construction of toe berm, with riser 1 m above design grade




Thermal Model

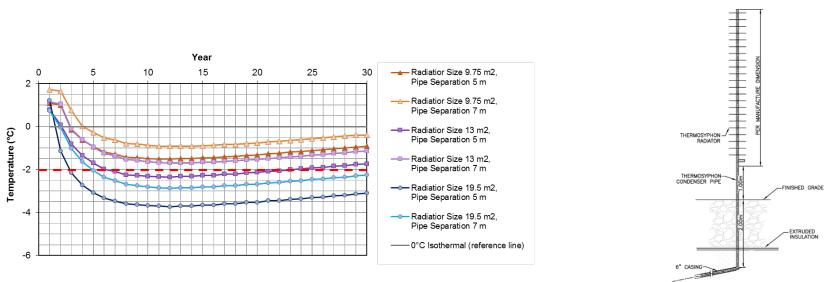
- Thermal modeling to evaluate thermal performance
- Major considerations
 - Site climate
 - Climate change (winter air temp. & wind)
 - Material properties based on drill data
 - Thermosyphon radiator surface area
 - Evaporator pipe (length, install angle, pipe offset)
- Critical section to evaluate
 - Top of permafrost / massive ice
 - Mid-point between two evaporator pipes
 - Warmest position at inner-embankment toe

Validation of Thermal Model

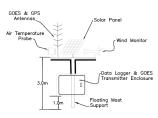
Measured ground temperature from Beaver Creek Test Section 5 (Control YG5)
Model ground temperature (thermal conduction model)

Building on data from nearby Yukon Government Test Section...value added data

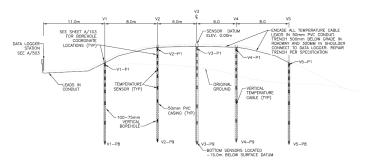
Model Results


Maximum Annual Ground Temperature

Warmest Monitoring Location


- Inner embankment toe
- Shallowest location of evaporator pipe
- Greater sensitivity to surface heat transfer

Warmest Monitoring Location


Model Scenario	Radiator Surface Area (m²)	Evaporator Pipe Separation (m)	Years before Thermal Criteria Reached	Years Less than -2°C
1A	0.75	5	30	0
1B	9.75	7	30	0
2A	40.00	5	5	19
2B	13.00	7	30	0
3A	40.50	5	2	28
3B	19.50	7	4	26

Monitoring

- Verify thermosyphon function and need for repair / replacement
- Verify thermal performance of design at representative locations
- Collect data that can be used to support similar designs

Monitoring Component	Location	Purpose	Data Collection Frequency
Ground Temperature Monitoring	Monitoring Station 1 & 2	Verify thermal performance	Every four hour
Meteorological Monitoring	Monitoring Station 2	Support validation of thermal performance	Hourly
Thermal Infrared Images	Thermosyphon Radiators	Verify thermosyphon function	Annually, Air temp <-5°C
Visual Inspection	Design Section	Thermosyphons & highway distress	Annually, Early September

Summary

- Dry Creek located along the Alaska Highway is characterized by warm permafrost with massive ground ice.
- Past development of borrow material, thermal forcing from the highway embankment, and longterm changes in climate are inferred to be the cause of permafrost warming and thaw that contribute to highway distress and increased maintenance costs.
- Preliminary design demonstrated that sloped thermosyphons would provide more immediate heat loss from the ground and stabilization of permafrost compared to an air convection embankment.
- Accepted thermal design is based on the installation of sloped, passive thermosyphons is expected to limit permafrost thaw and improve highway performance.
- Thermosyphons have been procured with plans for installation in the fall of 2019
- Long-term monitoring will be completed to evaluate performance over the 30-year period and to provide information that will support similar designs

