An Analysis of a Detailed Engineering Study in Accordance with IESO IAP Requirements

By: Nathan D. Wineinger – SRK Consulting (US) Jacques Jodouin, CET. LET – Jodouin Mine Ventilation

Presented at the Seventeenth North American Mine Ventilation Symposium

April 28 to May 1, 2019

Montréal, Quebec, Canada

IESO IAP Program

- Provides financial assistance for fast tracking capital investment for energy conservation projects in Ontario, CA.
 - Four Initiatives
 - Retrofit
 - Process and Systems, including Small
 Capital Projects
 - High Performance New Construction
 - Energy Managers

Mining Study

- Process & Systems Initiative
- Detailed Engineering Study
 - 1. Baseline Methodology and Data Collection
 - 2. Measure Analysis
 - 3. Economic Analysis
 - 4. Recommendations
 - . Implementation Action Plan

Baseline Methodology

- Full Ventilation Survey
 - Airflow Quantities
 - Gauge and Tube pressure measurements
 - Fan Pressures and Airflows
 - Pressures Regulators, Doors, Bulkheads
 - Psychrometrics (Barometric P., R.H., Temp.)
- Correlated Ventilation Base Model
- Fan Power Measurements
 - Volts
 - Amps
 - Power Factor

Main measure requirements

- Save mine electricity demand
- Financial Incentives based on lowest of:
 - 1. 70% of the Eligible Costs of the Project
 - 2. Product of annual electricity savings multiplied by \$230/MWh
 - 3. Amount that provides a Project Payback of 1 year.
- Measures with Payback < 1 year are ineligible for incentives

Measure Development

- Fan Optimizations
 - Inlet Cones
 - Outlet Evasés
 - VFDs
 - New fans
- Fan efficiency increases
- Reduction of losses
- Power decreased using VFD to original operating airflow

Measures Cont.

- Infrastructure Changes
 - Turning off main/booster/aux fans
 - Installation of airlock doors
 - Sealing inactive levels
 - Adding new parallel raises
 - Adding new primary ventilation raises
 - Interactive effects

🐦 srk consulting

Measure Results

- Fan Optimizations
 - Immediate Savings
 - Low Capital Costs
 - Payback < 1 year for single infrastructure changes
 - No Incentives
 - 2 or more fan changes
 - Incentives calculated
 - New Fans
 - Adequate savings with an acceptable Payback

👉 srk consulting

8

Measure Results Cont.

- Raise development measures
 - high capital cost
 - High Payback period
- Individual Infrastructure Changes
 - No savings
 - Air reroutes to other levels (emphasizes need for multiple bulkheads)
 - Removed fans cause other fans to work harder

📌 srk consulting

Measure Results Cont.

- Interactive effects
 - Doors
 - Bulkheads
 - Fans removed
 - Fans turned down
- Reasonable payback
- Significant Project Incentives

Discussion of Results

- Potential paradox between IESO objectives and mining objectives
 - Turn down fan
 - Electricity savings
 - Realized incentives
 - Turn up fan
 - Boost production

📌 srk consulting

Discussion of Results Cont.

- Measures recommended despite lack of incentives
 - Single evasé payback < 1 year
 - No incentive
 - Best practice

Discussion of Results Cont.

 Lack of significant savings of measure not necessarily required for implementation

- New Raise no acceptable payback (IESO)
 - Relatively small incentive
 - Needed for mine expansion

Conclusions Cont.

- Scope did not cover future tradeoff scenarios
- Trade off costs of raises may provide incentives when compared with alternatives
- Other reason for installing raises safety (US – egress, CA – secondary access to refuge)

Conclusions Cont.

- Infrastructure changes in tandem with fan adjustments
- Multiple infrastructure changes may be recommended
- Individual changes slight redistribution of airflow – little to no energy savings
- Adding infrastructure adds the effect of added air resistance – fans must be turned down to save electricity

Opportunities

- Future Trade-off studies
- Battery Electric Vehicle replacement
 - Decreased ventilation costs
 - Reduction in heat produced
 - Zero Emissions
 - Electrical cost increase for charging fleet
 - Trade-off

Thank you!

