Integration of Field Erosion Measurements with Erosion Models and 3D Design Tools for Development of Erosion Resistant Cover Systems

Rahul Peroor Principal Consultant (Civil Engineering)

September 5, 2019

Erosion Study Phases

Stages 1 & 2 Workflow

Solitude General Layout

→ srk consulting

Solitude Site Geology

Onsite Erodibility Studies

Objectives

- Access erodibility of Natural Slopes -Benchmark
- Access erodibility of Run of Borrow Gila Conglomerate
- Rock Veneer (Varying sizes)
- Screened Coarse Gila erodibility
- Assess erodibility of Gila
 Conglomerate mixed with Rock
 Veneer(Increase its coarse content)
- Assess impact of bedding layer

On-Site Rainfall Simulation

Rainfall simulations

Overland flow simulations

Onsite Erodibility Studies – Gila Conglomerate Covers (Plot 1, 8)

Plot 1 – Natural Gila Hill Slope

Plot 8 Gila Conglomerate Soil

WEPP Prediction (Plots 1,8)

Linear	Slope	Slope Linear		WEPP-Predicted Mean and Peak Average Annual Erosion (t/ha/y) for:			
Gradient (°)	(ft)	Height (ft)	Plo	ot 1	Plo	ot 8	
	(,		Mean	Peak	Mean	Peak	
11°	400	80	0.2	0.8	6.6	22	
20%	700	140	0.5	1.8	11	28	
	1,000	200	0.7	2.5	11	26	
	1,300	260	0.8	2.9	11	22	
14°	400	100	0.5	1.7	12	36	
25%	700	175	1	3.7	19	41	
	1,000	250	1.4	4.7	18	33	
	1,300	325	1.7	5.3	17	31	
18°	400	132	1	3.4	23	55	
33%	700	231	2.1	6.7	31	55	
	1,000	330	3	8.6	29	44	
	1,300	429	3.5	9.8	27	42	

- Benchmark for low erosion rates:
 - Predicted Mean Average Annual Erosion Rate < 5t/ha/y</p>
 - Predicted Peak Average Annual Erosion Rate < 10t/ha/y</p>

Slope lengths and gradients that exhibit acceptably low erosion rates

Slope lengths and gradients that do not achieve acceptably low erosion rates

Onsite Erodibility Studies – Rock Veneer Covers (Plots 2, 3, 4, 9)

D₅₀ ~ 75 – 150mm

D₅₀ ~ 200mm

WEPP Prediction (Plots 2, 3, 4, 9)

Linear	Slope	Linear	WE	PP-Predict	dicted Mean and Peak Average Annual Erosion (t/ha/y) for:					
Batter	Length	Batter	Plo	ot 2	Plo	ot 3	Plo	ot 4	Plo	ot 9
Gradient (°)	(ft)	Height (ft)	Mean	Peak	Mean	Peak	Mean	Peak	Mean	Peak
11°	400	80	0.4	1.6	1.2	5	0.7	3.4	1.6	7.3
20%	700	140	0.9	3.3	3.1	12	2.1	9	5.1	20
	1,000	200	1.3	4.1	4.7	16	3.5	14	8.8	32
	1,300	260	1.5	4.4	6	19	4.6	17	12	40
14°	400	100	0.9	3	2.5	9.2	1.6	7	3.7	15
25%	700	175	1.8	5.7	6.1	20	4.7	18	10	36
	1,000	250	2.3	6.9	8.8	27	7.5	25	17	53
	1,300	325	2.6	7.2	11	31	9.4	29	21	62
18°	400	132	1.8	5.6	5.1	17	3.9	15	8.4	30
33%	700	231	3.5	10	11	33	9.9	32	20	63
	1,000	330	4.4	11	16	44	15	44	32	87
	1,300	429	4.9	12	20	49	18	49	40	100

• Erosion Benchmark for low erosion rates:

- Predicted Mean Average Annual Erosion Rate < 5t/ha/y</p>
- Predicted Peak Average Annual
 Erosion Rate < 10t/ha/y

Slope lengths and gradients that do not achieve acceptably low erosion rates

Slope lengths and gradients that exhibit acceptably low erosion rates

Onsite Erodibility Studies – Screened Coarse Gila Covers (Plot 6, 7)

WEPP Prediction (Plots 6,7)

Linear	Slope	Linear	WEPP Average	-Predicted Annual Er	Mean and osion (t/h	d Peak a/y) for:
Gradient (°)	(m)	Height (m)	Plo	ot 6	Plo	ot 7
crucient ()	(,	11016110 (111)	Mean	Peak	Mean	Peak
11°	400	80	0.4	1.5	0.7	2.9
20%	700	140	0.8	2.7	1.7	6.4
	1,000	200	1.1	3.4	2.4	8.4
	1,300	260	1.2	3.5	2.9	9.6
14°	400	100	0.8	2.6	1.4	5.4
25%	700	175	1.5	4.7	3.4	12
	1,000	250	1.9	5.5	4.6	14
	1,300	325	2.1	5.7	5.5	16
18°	400	132	1.5	4.7	3	10
33%	700	231	2.9	7.9	6.7	20
	1,000	330	3.6	9.3	9	24
	1,300	429	4.1	10	11	27

- Benchmark for low erosion rates:
 - Predicted Mean Average Annual Erosion Rate < 5t/ha/y</p>
 - Predicted Peak Average Annual Erosion Rate < 10t/ha/y</p>

Slope lengths and gradients that exhibit acceptably low erosion rates

Slope lengths and gradients that do not achieve acceptably low erosion rates

Onsite Erodibility Studies – Gila + Rock Veneer Blended Covers

Plot 3A – Gila mixed with Rock ($D_{50} \sim 75 - 150$ mm)

Plot 4A – Gila mixed with Rock ($D_{50} \sim 25 - 75$ mm)

WEPP Prediction (Plots 3A, 4A)

Linear	Slope	Linear	WEPP-Pre Anr	dicted Meanual Erosio	an and Pea n (t/ha/y)	ık Average for:
Batter	Length	Batter	Plot	t 3A	Plot	t 4A
Gradient ()	(11)	Height (III)	Mean	Peak	Mean	Peak
11°	400	80	0.9	3.4	0.8	3.8
20%	700	140	1.8	3.9	1.9	5.9
	1,000	200	1.8	3.3	2.6	6.1
	1,300	260	2.1	4.9	2.7	6.1
14°	400	100	1.7	4.8	2	8.6
25%	700	175	2.6	5.2	4.1	13
	1,000	250	3	7.9	4.5	13
	1,300	325	3.7	9.1	4.8	13
18°	400	132	3.3	9.8	4.9	17
33%	700	231	5.1	13	8.6	25
	1,000	330	5.8	12	9.8	25
	1,300	429	6.1	12	10	22

- Benchmark for low erosion rates:
 - Predicted Mean Average Annual Erosion Rate < 5t/ha/y</p>
 - Predicted Peak Average Annual Erosion Rate < 10t/ha/y</p>

Slope lengths and gradients that exhibit acceptably low erosion rates

Slope lengths and gradients that do not achieve acceptably low erosion rates

Onsite Erodibility Studies – Rock Veneer with Bedding Covers

Plot 4A

Onsite Erodibility Studies –Bedding Layer

WEPP Prediction (Plots 5A, 8A)

Linear	Slope	Linear	WEPP-Predicted Mean and Peak Average Annual Erosion (t/ha/y) for:			
Batter	Length	Batter	Plot	t 5A	Plot	t 8A
Gradient ()	(11)		Mean	Peak	Mean	Peak
11°	400	80	0.1	0.2	0.1	0.4
20%	700	140	0.1	0.4	0.3	0.8
	1,000	200	0.2	0.7	0.4	1.2
	1,300	260	0.3	0.9	0.6	1.6
14°	400	100	0.1	0.4	0.2	0.8
25%	700	175	0.3	0.8	0.5	1.4
	1,000	250	0.4	1	0.8	1.9
	1,300	325	0.5	1.3	0.9	2.3
18°	400	132	0.3	0.9	0.5	1.6
33%	700	231	0.5	1.4	0.9	2.5
	1,000	330	0.6	1.5	1.2	2.9
	1,300	429	0.8	1.8	1.4	3.4

- Benchmark for low erosion rates:
 - Predicted Mean Average Annual Erosion Rate < 5t/ha/y</p>
 - Predicted Peak Average Annual Erosion Rate < 10t/ha/y</p>

Slope lengths and gradients that exhibit acceptably low erosion rates

Slope lengths and gradients that do not achieve acceptably low erosion rates

Cover Selection – WEPP Prediction

Linear	cl	Linear			WEPP-Predicted	Mean and Peak	Average Annua	Erosion (t/ha	/y) for:	
Batter	Slope	Batter		Plot 1	Р	lot 2/2A	Pl	ot 3	Pl	ot 4
Gradient (°)	Lengin (n)	Height (ff) Mean	Peak	: Mean	Peak	Mean	Peak	Mean	Peak
	400	80	0.2	0.8	0.4	1.6	1.2	5.0	0.7	3.4
11°	700	140	0.5	1.8	0.9	3.3	3.1	12	2.1	9.0
(20%)	1,000	200	0.7	2.5	1.3	4.1	4.7	16	3.5	14
	1,300	260	0.8	2.9	1.5	4.4	6.0	19	4.6	17
	400	100	0.5	1.7	0.9	3.0	2.5	9.2	1.6	7.0
14°	700	175	1.0	3.7	1.8	5.7	6.1	20	4.7	18
(25%)	1,000	250	1.4	4.7	2.3	6.9	8.8	27	7.5	25
	1,300	325	1.7	5.3	2.6	7.2	11	31	9.4	29
	400	132	1.0	3.4	1.8	5.6	5.1	17	3.9	15
18°	700	231	2.1	6.7	3.5	10	- 11	33	9.9	32
(33%)	1,000	330	3.0	8.6	4.4	11	16	44	15	44
	1,300	429	3.5	9.8	4.9	12	20	49	18	49
Linear		Linear		WEPP-Predicted Mean and Peak Average Annual Frasion (t/ha/y) for						
Batter	Slope	Batter		Plot 6		Plot 7 Plot 8			PI PI	ot 9
Gradient (°)	Length (m) Height (n	n) Mean	Peak	(Mean	Peak	Mean	Peak	Mean	Peak
	400	80	0.4	1.5	0.7	2.9	6.6	22	1.6	7.3
11°	700	140	0.8	2.7	1.7	6.4	11	28	5.1	20
(20%)	1,000	200	1.1	3.4	2.4	8.4	11	26	8.8	32
	1,300	260	1.2	3.5	2.9	9.6	11	22	12	40
	400	100	0.8	2.6	1.4	5.4	12	36	3.7	15
14°	700	175	1.5	4.7	3.4	12	19	41	10	36
(25%)	1,000	250	1.9	5.5	4.6	14	18	33	17	53
	1,300	325	2.1	5.7	5.5	16	17	31	21	62
	400	132	1.5	4.7	3.0	10	23	55	8.4	30
18°	700	231	2.9	7.9	6.7	20	31	55	20	63
(33%)	1,000	330	3.6	9.3	9.0	24	29	44	32	87
	1,300	429	4.1	10	11	27	27	42	40	100
Linear		Linear		WE	PP-Predicted Me	an and Peak A	verage Annual Er	osion (t/ha/v)	for:	
Batter	Slope	Batter	Plot	3A	Plot	4A	Plot	5A	Plo	8A
Gradient (°)	(m)	Height (m)	Mean	Peak	Mean	Peak	Mean	Peak	Mean	Peak

3.8

5.9

6.1

6.1

8.6

13

13

13

17

25

25

22

0.1

0.1

0.2

0.3

0.1

0.4

0.5

0.3

0.5

0.6

0.8

0.8

1.9

2.6

2.7

2.0

4.1

4.5

4.8

4.9

8.6

9.8

10

0.2

0.4

0.7

0.9

0.4

0.8

1.0

1.3

0.9

1.4

1.5

1.8

0.1

0.3

0.4

0.6

0.2

0.5

0.8

0.9

0.5

0.9

1.2

1.4

0.4

0.8

1.2

1.6

0.8

1.4

1.9

2.3

1.6

2.5

2.9

3.4

- Benchmark for low erosion rates:
 - Predicted Mean Average Annual Erosion Rate < 5t/ha/y</p>
 - Predicted Peak Average Annual Erosion Rate < 10t/ha/y</p>

Slope lengths and gradients that exhibit acceptably low erosion rates

Slope lengths and gradients that do not achieve acceptably low erosion rates

80

140

200

260

100

175

250

325

132

231

330

429

400

700

1,000

1,300

400

700

1,000

1,300

400

700

1,000

1,300

11° (20%)

14°

(25%)

18°

(33%)

0.9

1.8

1.8

2.1

1.7

2.6

3.0

3.7

3.3

5.1

5.8

6.1

3.4

3.9

3.3

4.9

4.8

5.2

7.9

9.1

9.8

13

12

12

Landform Screening

Landform Development (Straight Linear)

Landform Development (Concave)

Landform	Slope	Туре
L2	3H:1V - 4H:1V	Concave

Natural Slope Analogs

Landform Development (Convex-Concave - Analog 1)

Landform	Slope	Туре
L4	3H:1V	Convex-Concave (Analog 1)
L5	4H:1V	Convex-Concave (Analog 1)

Landform Development (Convex-Concave - Analog 2)

Landform	Slope	Туре
L6	3H:1V	Convex-Concave (Analog 2)
L7	4H:1V	Convex-Concave (Analog 2)

Landform Development (Natural Drainage Pattern)

	Natural Regrade Global Settings	×				
	Maximum distance between connecting channel	3.00				
	Maximum distance from ridgeline to channel's h	ead (ft.)	500			
	Maximum convex portion of subridge:					
	1.5 x 500 (ft.)		750			
	Percent of overall length (%)		10			
	Maximum convex portion of swale (ft.)		25			
	Slope at the mouth of the main valley bottom ch	nannel (%)	-0.50			
_	'A' channel reach(ft.)		50.00			
	2-yr, 1-hr(in.) (see documentation)	Rain Map	0.94			
	50-yr, 6-hr(in.) (see documentation)	Rain Map	3.08			
	Target drainage density (ft./ac.)	250.00				
	Target drainage density variance (%)	20.00				
	Force ridges to be lower than GeoFluv boundary					
	Angle from subridge to channel's perpendicular,	, upstream (deg.)	55.00			
	North or East straight-line slopes (%)		33.33			
	Maximum straight-line slopes (%)		33.33			
	Maximum cut / fill (%)		100.00			
	Minimum cut / fill (%)		100.00			
	Cut swell factor		1.000			
	Fill shrink factor	1.000				
	Channel: head elevation tolerance (ft.)	0.300				
	Channel: head slope tolerance (%)		20.000			

Landform Development (Natural Drainage Pattern)

Landform	Slope	Туре
L8	3H:1V-4H:1V	Natural Drainage Pattern (GeoFluv)
L9	4H:1V	Natural Drainage Pattern (GeoFluv)

SIBERIA Results (Cover 2A)

L1 surface with material 2A applied to embankment

L9 surface with material 2A applied to embankment

SIBERIA Results (Cover 3A)

L1 surface with material 3A applied to embankment

L9 surface with material 3A applied to embankment

SIBERIA Results (Cover 5A)

L1 surface with material 5A applied to embankment

L9 surface with material 5A applied to embankment

516500

SIBERIA Results (Cover 6)

L1 surface with material 6 applied to embankment

L9 surface with material 6 applied to embankment

Path Forward Design Optimization

L9 surface with material 3A applied to embankment

- Drainage density
- Flow concentration channels

Questions?

